Home / Regular Issue / JST Vol. 32 (2) Mar. 2024 / JST-4317-2023

 

Current Insight on Siraitia grosvenorii Flavonoids Extraction Process and its Bioactivity Characteristic: A Review

ZhaoJing, Douglas Law, Ahmed Najm, Cheah Yew Hoong and Shazrul Fazry

Pertanika Journal of Science & Technology, Volume 32, Issue 2, March 2024

DOI: https://doi.org/10.47836/pjst.32.2.08

Keywords: Bioactivity, extraction process, flavonoids, pharmacological activity, Siraitia grosvenorii

Published on: 26 March 2024

The Siraitia grosvenorii is a Chinese herb with various bioactive properties that has been widely used as a culinary ingredient and in traditional medicine. Flavonoids are among the important bioactive compounds in S. grosvenorii, which contribute significantly to the biological activity of S. grosvenorii. S. grosvenorii-flavonoids have been reported to possess various biological and pharmacological activities, including antioxidant, antibacterial, anti-inflammatory, hypolipidemic, and anti-diabetic, which are important for human health. Based on previous reports, the structure, extraction technology, biological activity and further development regarding S. grosvenorii-flavonoids are reviewed in this paper, providing appropriate insights and references for future development of S. grosvenorii-flavonoids.

  • Abdel-Hamid, M., Romeih, E., Huang, Z., Enomoto, T., Huang, L., & Li, L. (2020). Bioactive properties of probiotic set-yogurt supplemented with Siraitia grosvenorii fruit extract. Food Chemistry, 303, Article 125400. https://doi.org/10.1016/j.foodchem.2019.125400

  • Adamczak, A., Ożarowski, M., & Karpiński, T. M. (2019). Antibacterial activity of some flavonoids and organic acids widely distributed in plants. Journal of Clinical Medicine, 9(1), Article 109. https://doi.org/10.3390/jcm9010109

  • Akter, M., Parvin, M. S., Hasan, M. M., Rahman, M. A. A., & Islam, M. E. (2022). Anti-tumor and antioxidant activity of kaempferol-3-O-alpha-L-rhamnoside (Afzelin) isolated from Pithecellobium dulce leaves. BMC Complementary Medicine and Therapies, 22(1), Article 169. https://doi.org/10.1186/s12906-022-03633-x

  • Alkhalidy, H., Moore, W., Wang, A., Luo, J., McMillan, R. P., Wang, Y., Zhen, W., Hulver, M. W., & Liu, D. (2018). Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. The Journal of Nutritional Biochemistry, 58, 90-101. https://doi.org/10.1016/j.jnutbio.2018.04.014

  • Alkhalidy, H., Moore, W., Zhang, Y., McMillan, R., Wang, A., Ali, M., Suh, K.S., Zhen, W., Cheng, Z., Jia, Z., & Hulver, M. (2015). Small molecule kaempferol promotes insulin sensitivity and preserved pancreatic β-cell mass in middle-aged obese diabetic mice. Journal of Diabetes Research, 2015, 1-14. https://doi.org/10.1155/2015/532984

  • Azfaralariff, A., Farahfaiqah, F., Shahid, M., Sanusi, S. A., Law, D., Isa, A. R.M., Muhamad, M., Tsui, T. T., & Fazry, S. (2022). Marantodes pumilum: Systematic computational approach to identify their therapeutic potential and effectiveness. Journal of Ethnopharmacology, 283, Article 114751. https://doi.org/10.1016/j.jep.2021.114751

  • Barreca, M. M., Alessandro, R., & Corrado, C. (2023). Effects of flavonoids on cancer, cardiovascular and neurodegenerative diseases: Role of NF-κB signaling pathway. International Journal of Molecular Sciences, 24(11), Article 9236. https://doi.org/10.3390/ijms24119236

  • Beg, M. A., Shivangi, Afzal, O., Akhtar, M. S., Altamimi, A. S., Hussain, A., Imam, M. A., Ahmad, M. N., Chopra, S., & Athar, F. (2022). Potential efficacy of β-Amyrin targeting mycobacterial universal stress protein by in vitro and in silico approach. Molecules, 27(14), Article 4581. https://doi.org/10.3390/molecules27144581

  • Bian, Y., Lei, J., Zhong, J., Wang, B., Wan, Y., Li, J., Liao, C., He, Y., Liu, Z., Ito, K., & Zhang, B. (2022). Kaempferol reduces obesity, prevents intestinal inflammation, and modulates gut microbiota in high-fat diet mice. The Journal of Nutritional Biochemistry, 99, Article 108840. https://doi.org/10.1016/j.jnutbio.2021.108840

  • Bibbins-Domingo, K. (2016). Aspirin use for the primary prevention of cardiovascular disease and colorectal cancer: US preventive services task force recommendation statement. Annals of Internal Medicine, 164(12), 836-845. https://doi.org/10.7326/M16-0577

  • Cai Shi, D., Long, C., Vardeman, E., Kennelly, E. J., Lawton, M. A., & Di, R. (2023). Potential anti-alzheimer properties of mogrosides in vitamin B12-deficient caenorhabditis elegans. Molecules, 28(4), Article 1826. https://doi.org/10.3390/molecules28041826

  • Chaturvedula, V. S. P., & Prakash, I. (2013). Isolation and structure elucidation of daidzein and genistein from Siraitia grosvenorii. Asian Journal of Pharmaceutical Research and Development, 1(1), 67-72.

  • Chen, Y., Zhang, L., Li, Z., Wu, Z., Lin, X., Li, N., Shen, R., Wei, G., Yu, N., Gong, F., & Ji, G. (2022). Mogrol attenuates osteoclast formation and bone resorption by inhibiting the TRAF6/MAPK/NF-κB signaling pathway in vitro and protects against osteoporosis in postmenopausal mice. Frontiers in Pharmacology, 13, Article 803880. https://doi.org/10.3389/fphar.2022.803880

  • Cheun-Arom, T., & Sritularak, B. (2023). In vitro antidiabetic and advanced glycation end products inhibitory activity of methanol extracts of various dendrobium species. Journal of Applied Pharmaceutical Science, 13(6), 100-107. https://doi.org/10.7324/JAPS.2023.75102

  • Čižmárová, B., Hubková, B., Tomečková, V., & Birková, A. (2023). Flavonoids as promising natural compounds in the prevention and treatment of selected skin diseases. International Journal of Molecular Sciences, 24(7), Article 6324. https://doi.org/10.3390/ijms24076324

  • Dahlén, A. D., Dashi, G., Maslov, I., Attwood, M. M., Jonsson, J., Trukhan, V., & Schiöth, H. B. (2022). Trends in antidiabetic drug discovery: FDA approved drugs, new drugs in clinical trials and global sales. Frontiers in Pharmacology, 12, Article 807548. https://doi.org/10.3389/fphar.2021.807548

  • Dhanya, R., Arya, A. D., Nisha, P., & Jayamurthy, P. (2017). Quercetin, a lead compound against type 2 diabetes ameliorates glucose uptake via AMPK pathway in skeletal muscle cell line. Frontiers in Pharmacology, 8, Article 336. https://doi.org/10.3389/fphar.2017.00336

  • Duan, J., Zhu, D., Zheng, X., Ju, Y., Wang, F., Sun, Y., & Fan, B. (2023). Siraitia grosvenorii (Swingle) C. Jeffrey: Research progress of its active components, pharmacological effects, and extraction methods. Foods, 12(7), Article 1373. https://doi.org/10.3390/foods12071373

  • Eid, H. M., & Haddad, P. S. (2017). The antidiabetic potential of quercetin: underlying mechanisms. Current Medicinal Chemistry, 24(4), 355-364. https://doi.org/10.2174/0929867323666160909153707

  • Fang, C., Wang, Q., Liu, X., & Xu, G. (2017). Metabolic profiling analysis of Siraitia grosvenorii revealed different characteristics of green fruit and saccharified yellow fruit. Journal of Pharmaceutical and Biomedical Analysis, 145, 158-168. https://doi.org/10.1016/j.jpba.2017.06.046

  • Gong, P., Guo, Y., Chen, X., Cui, D., Wang, M., Yang, W., & Chen, F. (2022). Structural characteristics, antioxidant and hypoglycemic activities of polysaccharide from Siraitia grosvenorii. Molecules, 27(13), Article 4192. https://doi.org/10.3390/molecules27134192

  • Gong, X., Chen, N., Ren, K., Jia, J., Wei, K., Zhang, L., Lv, Y., Wang, J. and Li, M. (2019). The fruits of Siraitia grosvenorii: A review of a Chinese food-medicine. Frontiers in Pharmacology, 10, Article 1400. https://doi.org/10.3389/fphar.2019.01400

  • Huang, W., Wang, Y., Tian, W., Cui, X., Tu, P., Li, J., Shi, S., & Liu, X. (2022). Biosynthesis investigations of terpenoid, alkaloid, and flavonoid antimicrobial agents derived from medicinal plants. Antibiotics, 11(10), Article 1380. https://doi.org/10.3390/antibiotics11101380

  • Ibrahim, N. N. A., Wan Mustapha, W. A., Sofian-Seng, N. S., Lim, S. J., Razali, N. S. M., Teh, A. H., & Mediani, A. (2023). A comprehensive review with future prospects on the medicinal properties and biological activities of Curcuma caesia Roxb. Evidence-Based Complementary and Alternative Medicine, 2023, Article 7006565. https://doi.org/10.1155/2023/7006565

  • Irfan, M., Almotiri, A., & AlZeyadi, Z. A. (2022). Antimicrobial resistance and its drivers - A review. Antibiotics, 11(10), Article 1362. https://doi.org/10.3390/antibiotics11101362

  • Janibekov, A. A., Youssef, F. S., Ashour, M. L., & Mamadalieva, N. Z. (2018). New flavonoid glycosides from two Astragalus species (Fabaceae) and validation of their antihyperglycaemic activity using molecular modelling and in vitro studies. Industrial Crops and Products, 118, 142-148. https://doi.org/10.1016/j.indcrop.2018.03.034

  • Ju, P., Ding, W., Chen, J., Cheng, Y., Yang, B., Huang, L., Zhou, Q., Zhu, C., Li, X., Wang, M., & Chen, J. (2020). The protective effects of Mogroside V and its metabolite 11-oxo-mogrol of intestinal microbiota against MK801-induced neuronal damages. Psychopharmacology, 237, 1011-1026. https://doi.org/10.1007/s00213-019-05431-9

  • Kaur, B., & Singh, P. (2022). Inflammation: Biochemistry, cellular targets, anti-inflammatory agents and challenges with special emphasis on cyclooxygenase-2. Bioorganic Chemistry, 121, 105663. https://doi.org/10.1016/j.bioorg.2022.105663

  • Keylani, K., Mojeni, F. A., Khalaji, A., Rasouli, A., Aminzade, D., Karimi, M. A., Sanaye, P. M., Khajevand, N., Nemayandeh, N., Poudineh, M., & Deravi, N. (2023). Endoplasmic reticulum as a target in cardiovascular diseases: Is there a role for flavonoids? Frontiers in Pharmacology, 13, Article 1027633. https://doi.org/10.3389/fphar.2022.1027633

  • Khuntia, A., Martorell, M., Ilango, K., Bungau, S. G., Radu, A. F., Behl, T., & Sharifi-Rad, J. (2022). Theoretical evaluation of Cleome species’ bioactive compounds and therapeutic potential: A literature review. Biomedicine & Pharmacotherapy, 151, Article 113161. https://doi.org/10.1016/j.biopha.2022.113161

  • Kropp, M., Golubnitschaja, O., Mazurakova, A., Koklesova, L., Sargheini, N., Vo, T. T. K. S., De Clerck, E., Polivka J. J., Potuznik, P., Polivka, J., Stetkarova, I., Kubatka, P., & Thumann, G. (2023). Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications - Risks and mitigation. EPMA Journal, 14, 21-42. https://doi.org/10.1007/s13167-023-00314-8

  • Li, D., Jiang, C., Mei, G., Zhao, Y., Chen, L., Liu, J., Tang, Y., Gao, C., & Yao, P. (2020). Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes. Nutrients, 12(10), Article 2954. https://doi.org/10.3390/nu12102954

  • Li, H., Li, R., Jiang, W., & Zhou, L. (2022). Research progress of pharmacological effects of Siraitia grosvenorii extract. Journal of Pharmacy and Pharmacology, 74(7), 953-960. https://doi.org/10.1093/jpp/rgab150

  • Li, H., Liu, L., Chen, H. Y., Yan, X., Li, R. L., Lan, J., Xue, K.Y., Li, X., Zhuo, C.L., Lin, L., & Zhou, L. (2022). Mogrol suppresses lung cancer cell growth by activating AMPK-dependent autophagic death and inducing p53-dependent cell cycle arrest and apoptosis. Toxicology and Applied Pharmacology, 444, Article 116037. https://doi.org/10.1016/j.taap.2022.116037

  • Li, X., Xu, L. Y., Cui, Y. Q., Pang, M. X., Wang, F., & Qi, J. H. (2018). Anti-bacteria effect of active ingredients of Siraitia grosvenorii on the spoilage bacteria isolated from sauced pork head meat. Conference Series: Materials Science and Engineering, 292, Article 012012. https://doi.org/10.1088/1757-899X/292/1/012012

  • Liu, H., Du, Y., Liu, L. L., Liu, Q. S., Mao, H., & Cheng, Y. (2023). Anti-depression-like effect of Mogroside V is related to the inhibition of inflammatory and oxidative stress pathways. European Journal of Pharmacology, 955, Article 175828. https://doi.org/10.1016/j.ejphar.2023.175828

  • Liu, W., Cui, X., Zhong, Y., Ma, R., Liu, B., & Xia, Y. (2023). Phenolic metabolites as therapeutic in inflammation and neoplasms: molecular pathways explaining their efficacy. Pharmacological Research, 193, Article 106812. https://doi.org/10.1016/j.phrs.2023.106812

  • Liu, X., Zhang, J., Li, Y., Sun, L., Xiao, Y., Gao, W., & Zhang, Z. (2019). Mogroside derivatives exert hypoglycemics effects by decreasing blood glucose level in HepG2 cells and alleviates insulin resistance in T2DM rats. Journal of Functional Foods, 63, Article 103566. https://doi.org/10.1016/j.jff.2019.103566

  • Liu, Z., Zhu, X., Mohsin, A., Yin, Z., Zhuang, Y., Zhou, B., Du, L., Yin, X., Liu, N., Wang, Z., & Guo, M. (2022). Embryogenic callus induction, cell suspension culture, and spectrum-effect relationship between antioxidant activity and polyphenols composition of Siraitia grosvenorii cultured cells. Industrial Crops and Products, 176, Article 114380. https://doi.org/10.1016/j.indcrop.2021.114380

  • Lu, F., Sun, J., Jiang, X., Song, J., Yan, X., Teng, Q., & Li, D. (2023). Identification and isolation of α-glucosidase inhibitors from Siraitia grosvenorii roots using bio-affinity ultrafiltration and comprehensive chromatography. International Journal of Molecular Sciences, 24(12), Article 10178. https://doi.org/10.3390/ijms241210178

  • Lü, W., Ren, G., Shimizu, K., Li, R., & Zhang, C. (2024). Mogroside ⅡE, an in vivo metabolite of sweet agent, alleviates acute lung injury via Pla2g2a-EGFR inhibition. Food Science and Human Wellness, 13(1), 299-312. https://doi.org/10.26599/FSHW.2022.9250025

  • Lu, Y., Zhu, S., He, Y., Mo, C., Wu, C., Zhang, R., Zheng, X., & Tang, Q. (2020). Systematic characterization of flavonoids from Siraitia grosvenorii leaf extract using an integrated strategy of high‐speed counter‐current chromatography combined with ultra-highperformance liquid chromatography and electrospray ionization quadrupole time‐of‐flight mass spectrometry. Journal of Separation Science, 43(5), 852-864. https://doi.org/10.1002/jssc.201900789

  • Luo, H., Peng, C., Xu, X., Peng, Y., Shi, F., Li, Q., Dong, J., & Chen, M. (2022). The protective effects of mogroside V against neuronal damages by attenuating mitochondrial dysfunction via upregulating Sirtuin3. Molecular Neurobiology, 59(4), 2068-2084. https://doi.org/10.1007/s12035-021-02689-z

  • Mitra, S., Lami, M. S., Uddin, T. M., Das, R., Islam, F., Anjum, J., Hossain, M.J., & Emran, T. B. (2022). Prospective multifunctional roles and pharmacological potential of dietary flavonoid narirutin. Biomedicine & Pharmacotherapy, 150, Article 112932. https://doi.org/10.1016/j.biopha.2022.112932

  • Mo, L., & Li, D. (2009). Antioxidant activity of flavonol glycosides of Siraitia grosvenorii flower. Modern Food Science and Technology, 25(5), 484-486.

  • Moudaka, T. E., Murugan, P., Abdul Rahman, M. B., & Tejo, B. A. (2023). Discovery of mycobacterium tuberculosis CYP121 new inhibitor via structure-based drug repurposing. Pertanika Journal of Science & Technology, 31(3), 1503-1521. https://doi.org/10.47836/pjst.31.3.21

  • Najm, A. A., Azfaralarriff, A., Dyari, H. R. E., Alwi, S. S. S., Khalili, N., Othman, B. A., Law. D., Shahid, M., & Fazry, S. (2022). A systematic review of antimicrobial peptides from fish with anticancer properties. Pertanika Journal of Science & Technology, 30(2), 1171-1196. https://doi.org/10.47836/pjst.30.2.18

  • Ooi, T. C., Ibrahim, F. W., Ahmad, S., Chan, K. M., Leong, L. M., Mohammad, N., & Rajab, N. F. (2021). Antimutagenic, cytoprotective and antioxidant properties of ficus deltoidea aqueous extract in vitro. Molecules, 26(11), Article 3287. https://doi.org/10.3390/molecules26113287

  • Pal, R., Kumar, L., Anand, S., & Bharadvaja, N. (2023). Role of natural flavonoid products in managing osteoarthritis. Revista Brasileira de Farmacognosia, 33, 663-675. https://doi.org/10.1007/s43450-023-00387-6

  • Pan, Y., Wei, L., Zhu, Z., Liang, Y., Huang, C., Wang, H., & Wang, K. (2012). Processing of Siraitia grosvenorii’ leaves: Extraction of antioxidant substances. Biomass and Bioenergy, 36, 419-426. https://doi.org/10.1016/j.biombioe.2011.11.011

  • Pandey, A. K., & Chauhan, O. P. (2019). Monk fruit (Siraitia grosvenorii) - Health aspects and food applications. Pantnagar Journal of Research, 17(3), 191-198.

  • Pasala, P. K., Shaik, R. A., Rudrapal, M., Khan, J., Alaidarous, M. A., Khairnar, S. J., Bendale, A. R., Naphade, V. D., Sahoo, R. K., Zothantluanga, J. H., & Walode, S. G. (2022). Cerebroprotective effect of Aloe Emodin: In silico and in vivo studies. Saudi Journal of Biological Sciences, 29(2), 998-1005. https://doi.org/10.1016/j.sjbs.2021.09.077

  • Qing, Z. X., Zhao, H., Tang, Q., Mo, C. M., Huang, P., Cheng, P., Yang, P., Yang, X. Y., Liu, X. B., Zheng, Y. J., & Zeng, J. G. (2017). Systematic identification of flavonols, flavonol glycosides, triterpene and siraitic acid glycosides from Siraitia grosvenorii using high-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry combined with a screening strategy. Journal of Pharmaceutical and Biomedical Analysis, 138, 240-248. https://doi.org/10.1016/j.jpba.2017.01.059

  • Rao, R., Yang, R. J., Deng, Y. Y., He, X. Y., Ye, X. C., & Liu, Y. W. (2012). Determination of total flavonoids in Siraitia grosvenorii swingle fruit extract and vine leaf extract. China Pharmacist, 15, 7-9.

  • Razak, A. M., Zakaria, S. N. A., Sani, N. F. A., Rani, N. A., Hakimi, N. H., Said, M. M., Jen, K. T., Han, K. G., & Makpol, S. (2023). A subcritical water extract of soil grown Zingiber officinale Roscoe: Comparative analysis of antioxidant and anti-inflammatory effects and evaluation of bioactive metabolites. Frontiers in Pharmacology, 14, Article 1006265. https://doi.org/10.3389/fphar.2023.1006265

  • Septembre-Malaterre, A., Boumendjel, A., Seteyen, A. L. S., Boina, C., Gasque, P., Guiraud, P., & Sélambarom, J. (2022). Focus on the high therapeutic potentials of quercetin and its derivatives. Phytomedicine Plus, 2(1), Article 100220. https://doi.org/10.1016/j.phyplu.2022.100220

  • Sethupathi, P., Matetić, A., Bang, V., Myint, P. K., Rendon, I., Bagur, R., Diaz-Arocutipa, C., Ricalde, A., & Mamas, M. A. (2023). Association of diabetes mellitus and its types with in-hospital management and outcomes of patients with acute myocardial infarction. Cardiovascular Revascularization Medicine, 52, 16-22 https://doi.org/10.1016/j.carrev.2023.02.008

  • Shahid, M., Law, D., Azfaralariff, A., Mackeen, M. M., Chong, T. F., & Fazry, S. (2022). Phytochemicals and biological activities of Garcinia atroviridis: A critical review. Toxics, 10(11), Article 656. https://doi.org/10.3390/toxics10110656

  • Shamsudin, N. F., Ahmed, Q. U., Mahmood, S., Shah, S. A. A., Khatib, A., Mukhtar, S., Alsharif, M.A., Parveen, H., & Zakaria, Z. A. (2022). Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules, 27(4), Article 1149. https://doi.org/10.3390/molecules27041149

  • Sharma, D., Tekade, R. K., & Kalia, K. (2020). Kaempferol in ameliorating diabetes-induced fibrosis and renal damage: An in vitro and in vivo study in diabetic nephropathy mice model. Phytomedicine, 76, Article 153235. https://doi.org/10.1016/j.phymed.2020.153235

  • Shen, J., Shen, D., Tang, Q., Li, Z., Jin, X., & Li, C. (2022). Mogroside V exerts anti-inflammatory effects on fine particulate matter-induced inflammation in porcine alveolar macrophages. Toxicology in Vitro, 80, Article 105326. https://doi.org/10.1016/j.tiv.2022.105326

  • Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chemistry, 383, Article 132531. https://doi.org/10.1016/j.foodchem.2022.132531

  • Singh, A., Kukreti, R., Saso, L., & Kukreti, S. (2022). Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules, 27(3), Article 950. https://doi.org/10.3390/molecules27030950

  • Song, J. R., Li, N., Wei, Y. L., Lu, F. L., & Li, D. P. (2022). Design and synthesis of mogrol derivatives modified on a ring with anti-inflammatory and anti-proliferative activities. Bioorganic & Medicinal Chemistry Letters, 74, Article 128924. https://doi.org/10.1016/j.bmcl.2022.128924

  • Su, M., Li, Z., Zhou, S., Zhang, H., Xiao, Y., Li, W., Shang, H., & Li, J. (2023). Kaempferitrin, a major compound from ethanol extract of Chenopodium ambrosioides, exerts antitumour and hepatoprotective effects in the mice model of human liver cancer xenografts. Journal of Pharmacy and Pharmacology, 75(8), 1066-1075. https://doi.org/10.1093/jpp/rgad046

  • Sung, Y. Y., Yuk, H. J., Yang, W. K., Kim, S. H., & Kim, D. S. (2020). Siraitia grosvenorii residual extract attenuates atopic dermatitis by regulating immune dysfunction and skin barrier abnormality. Nutrients, 12(12), Article 3638. https://doi.org/10.3390/nu12123638

  • Suriyaprom, S., Srisai, P., Intachaisri, V., Kaewkod, T., Pekkoh, J., Desvaux, M., & Tragoolpua, Y. (2023). Antioxidant and anti-inflammatory activity on LPS-stimulated RAW 264.7 macrophage cells of white mulberry (Morus alba L.) leaf extracts. Molecules, 28(11), Article 4395. https://doi.org/10.3390/molecules28114395

  • Thakur, K., Partap, M., Kumar, P., Sharma, R., & Warghat, A. R. (2022). Understandings of bioactive composition, molecular regulation, and biotechnological interventions in the development and usage of specialized metabolites as health-promoting substances in Siraitia grosvenorii (Swingle) C. Jeffrey. Journal of Food Composition and Analysis, 116, Article 105070. https://doi.org/10.1016/j.jfca.2022.105070

  • Wang, M., Xing, S., Luu, T., Fan, M., & Li, X. (2015). The gastrointestinal tract metabolism and pharmacological activities of grosvenorine, a major and characteristic flavonoid in the fruits of Siraitia grosvenorii. Chemistry & Biodiversity, 12(11), 1652-1664. https://doi.org/10.1002/cbdv.201400397

  • Wang, Y., Li, H. B., Bai, X. F., Zhang, M., Li, X. M. (2006). Study on enzyme-solvent extraction process for flavonoid from Momordica grosvenorii. Food Science and Technology, 31, 125-127.

  • Wu, J., Jian, Y., Wang, H., Huang, H., Gong, L., Liu, G., Yang, Y., & Wang, W. (2022). A review of the phytochemistry and pharmacology of the fruit of Siraitia grosvenorii (Swingle): A traditional Chinese medicinal food. Molecules, 27(19), Article 6618. https://doi.org/10.3390/molecules27196618

  • Wuttisin, N., & Boonsook, W. (2019). Total phenolic, flavonoid contents and antioxidant activity of Siraitia grosvenorii fruits extracts. Food and Applied Bioscience Journal, 7(3), 131-141.

  • Xu, H., Xu, M., Yuan, F., & Gao, Y. (2017). Chemical and antioxidant properties of functional compounds extracted from Siraitia grosvenorii by subcritical water. Acta Alimentaria, 46(2), 162-171. https://doi.org/10.1556/066.2016.0006

  • Yanan, S., Bohan, L., Shuaifeng, S., Wendan, T., Ma, Z., & Wei, L. (2023). Inhibition of Mogroside IIIE on isoproterenol-induced myocardial fibrosis through the TLR4/MyD88/NF-κB signaling pathway. Iranian Journal of Basic Medical Sciences, 26(1), 114-120.

  • Yang, L., Zeng, S., Li, Z. H., & Pan, Y. M. (2016). Chemical components of the leaves of Siraitia grosvenorii. Chemistry of Natural Compounds, 52, 891-892. https://doi.org/10.1007/s10600-016-1805-2

  • Yang, Z., Wang, H., Qi, G., Chen, G., Cao, C., & Wang, S. (2022). Antimicrobial effects of a compound solution of three medicine food homology plants. Food Bioscience, 49, Article 101845. https://doi.org/10.1016/j.fbio.2022.101845

  • Yedjou, C. G., Grigsby, J., Mbemi, A., Nelson, D., Mildort, B., Latinwo, L., & Tchounwou, P. B. (2023). The management of diabetes mellitus using medicinal plants and vitamins. International Journal of Molecular Sciences, 24(10), Article 9085. https://doi.org/10.3390/ijms24109085

  • Zang, E., Jiang, L., Cui, H., Li, X., Yan, Y., Liu, Q., Chen, Z., & Li, M. (2022). Only plant-based food additives: An overview on application, safety, and key challenges in the food industry. Food Reviews International, 39(8), 5132-5163. https://doi.org/10.1080/87559129.2022.2062764

  • Zhang, C., Rong, D., & Zhang, Z. (2013). 罗汉果花中黄酮的提取及结构表征(Extraction and structural characterization of flavonoids from monk fruit flowers). Spectroscopy Laboratory, 30(3), 1389-1394. https://doi.org/10.3969/j.issn.1004-8138.2013.03.080

  • Zhang, H. Y., Yang, H. H., Zhang, M., Wang, Y. R., Wang, J. R., Jiang, Z. H., & Hu, P. (2013). Comparative analysis of chemical constituents in different parts of Siraitia grosvenorii using UPLC-MS combined with pattern recognition. Chinese Traditional and Herbal Drugs, 44(1), 19-23.

  • Zhang, Y., Zhou, G., Peng, Y., Wang, M., & Li, X. (2020). Anti-hyperglycemic and anti-hyperlipidemic effects of a special fraction of luo han guo extract on obese T2DM rats. Journal of Ethnopharmacology, 247, Article 112273. https://doi.org/10.1016/j.jep.2019.112273

  • Zhang, Z., Li, X., Sang, S., McClements, D. J., Chen, L., Long, J., Jiao, A., Jin, Z., & Qiu, C. (2022). Polyphenols as plant-based nutraceuticals: Health effects, encapsulation, nano-delivery, and application. Foods, 11(15), Article 2189. https://doi.org/10.3390/foods11152189

  • Zhang, Z. R., Sun, G. R., Duan, X. Y., & Jiang, G. Q. (2016) Optimization of ultrasonic-assisted extraction process for total flavonoids from Siraitia grosvenorii flower by response surface methodology. Hubei Agricultural Science, 55, 1518-1522.

  • Zhou, H. (2022). Study on the role of nutrients in food to improve the motion state of athletes. Italian Journal of Food Science, 34(2), 28-33. https://doi.org/10.15586/ijfs.v34i2.2126

  • Zhu, Y. M., Pan, L. C., Zhang, L. J., Yin, Y., Zhu, Z. Y., Sun, H. Q., & Liu, C. Y. (2020). Chemical structure and antioxidant activity of a polysaccharide from Siraitia grosvenorii. International Journal of Biological Macromolecules, 165, 1900-1910. https://doi.org/10.1016/j.ijbiomac.2020.10.127

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4317-2023

Download Full Article PDF

Share this article

Related Articles