Home / Regular Issue / JTAS Vol. 31 (S1) 2023 / JST(S)-0586-2023

 

Improved Thermal and Mechanical Properties of Kenaf Fiber/ABS Polymer Composites via Resin Coating Treatment

Macaulay Mfon Owen, Emmanuel Okechukwu Achukwu, Ahmad Zafir Romli, Muhammad Hanif Ramlee, Abdul Halim Abdullah, Solehuddin Shuib and Hazizan Md Akil

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue S1, December 2023

DOI: https://doi.org/10.47836/pjst.31.S1.03

Keywords: ABS composites, kenaf fibers, mechanical properties, resin coating, thermal degradation and stability

Published on: 27 October 2023

In developing natural fiber composites (biocomposites), compatibility between natural cellulosic fibers and polymers has always created serious challenges, reducing performance. This study focused on applying a novel approach using epoxy resin as a coating medium to enhance the properties of the fibers and the interface between the hydrophobic polymer and the hydrophilic natural fiber. 10 wt% of uncoated kenaf fibers (KF) and coated kenaf (CKF) fibers were compounded with acrylonitrile butadiene styrene (ABS) thermoplastic polymer in a twin-screw extruder at an optimized temperature of 220°C under the same processing conditions. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) examined the coated and uncoated fibers'' physicochemical compositions and surface properties. The developed composites' thermal, mechanical, and microstructural characteristics were also examined, and the results revealed that the CKF/ABS composites had better interfacial bonding and mechanical characteristics than the uncoated KF/ABS composite. Coating natural fibers with epoxy resin is a novel technique for improving interfaces and developing environmentally friendly composites from natural sources.

  • Achukwu, E. O., Barnabas, A. M., Mamman, A., & Uzochukwu, M. I. (2015). Fabrication of palm kernel shell epoxy composites and study of their mechanical properties. Nigerian Journal of Materials Science and Engineering, 6(1), 32-38.

  • Achukwu, E. O., Dauda, B. M., & Ishiaku, U. S. (2015). Mechanical properties of plied cotton fabric-coated unsaturated polyester composites: Effects of alkali treatments. International Journal of Composite Materials, 5(4), 71-78. https://doi.org/10.5923/j.cmaterials.20150504.01

  • Achukwu, E. O., Ochika, J. O., Adole, A. E. & Owen, M. M. (2015). Tensile properties of alkali treated four-ply cotton woven fabrics for tarpaulin use. NSUK Journal of Science and Technology, 5(2), 69–72.

  • Achukwu, E. O., Odey J. O., Owen, M. M., Lawal N., Oyilagu G. A., & Adamu A. I. (2022). Physical and mechanical properties of flamboyant (Delonix regia) pod-filled polyester composites. Heliyon, 8(1), e08724. https://doi.org/10.1016/j.heliyon.2022.e08724

  • Achukwu, E. O., Owen, M. M., Danladi, A., Dauda, B. M., Romli, A. Z., Ishiaku, U. S., & Akil, H. M. (2023). Effect of glass fiber loading and reprocessing cycles on the mechanical, thermal, and morphological properties of isotactic polypropylene composites. Journal of Applied Polymer Science, 140(10), e53588. https://doi.org/10.1002/app.53588

  • Akil, H. M., Omar, M. F., Mazuki, A. A. M., Safiee, S., Ishak, Z. A. M., & Abu Bakar, A. (2011). Kenaf fiber reinforced composites: A review. Materials & Design, 32(8-9), 4107–4121. https://doi.org/10.1016/j.matdes.2011.04.008

  • Asim, M. Jawaid, M., Abdan, K., & Ishak, M. R. (2016). Effect of alkali and silane treatments on mechanical and fibermatrix bond strength of kenaf and pineapple leaf fibers. Journal of Bionic Engineering, 13(30), 426-435. https://doi.org/10.1016/S1672-6529(16)60315-3

  • ASTM D638-03. (2012). Standard test method for tensile properties of plastics. ASTM International. https://www.astm.org/d0638-03.html

  • ASTM Standard D790. (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. ASTM International. https://www.astm.org/d0790-17.html

  • Asumani, O. M. L., Reid, R.G., & Paskaramoorthy, R. (2012). The effects of alkali-silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 43(9), 1431–1440. https://doi.org/10.1016/j.compositesa.2012.04.007

  • Asyraf, M. R. M., Syamsir, A., Bathich, H., Itam, Z., Supian, A. B. M., Norhisham, S., Nurazzi, N. M., Khan, T., & Rashid, M. Z. A. (2022). Effect of fibre layering sequences on flexural creep properties of kenaf fibre-reinforced unsaturated polyester composite for structural applications. Fibers and Polymers, 23(11), 3232–3240. https://doi.org/10.1007/s12221-022-4386-7

  • Asyraf, M. R. M., Syamsir, A., Ishak, M. R., Sapuan, S. M., Nurazzi, N. M., Norrrahim, M. N. F., Ilyas, R. A., Khan, T., & Rashid, M. Z. A. (2023). Mechanical properties of hybrid lignocellulosic fiber-reinforced biopolymer green composites: A review. Fibers and Polymers, 24(2), 337-353. https://doi.org/10.1007/s12221-023-00034-w

  • Azwa, Z. N. & Yousif, B. F. (2013). Characteristics of kenaf fiber/epoxy composites subjected to thermal degradation. Polymer Degradation and Stability, 98(12), 2752-2759 http://doi.org/10.1016/j.polymdegradstab.2013.10.008

  • Dehghani, A., Madadi Ardekani, S., Al-Maadeed, M. A., Hassan, A. & Wahit, M. U. (2013). Mechanical and thermal properties of date palm leaf fiber reinforced recycled poly(ethylene terephthalate) composites. Materials & Design, 52, 841-848. http://doi.org/10.1016/j.matdes.2013.06.022

  • Doumbia, A. S., Castro, M., Jouannet, D., Kervoëlen, A., Falher, T., Cauret, L., & Bourmaud, A. (2015). Flax/polypropylene composites for lightened structures: Multiscale analysis of process and fiber parameters. Materials Design, 87, 331–341. http://doi.org/10.1016/j.matdes.2015.07.139

  • El Abbassi, F. E, Assarar, M., Ayad, R., Sabhi, H., Buet, S., & Lamdouar, N. (2019). Effect of recycling cycles on the mechanical and damping properties of short alfa fiber reinforced polypropylene composite. Journal of Renewable Materials, 7(3), 253–267. http://doi.org/10.32604/jrm.2019.01759

  • Feng, N. L., Malingam, S. D., Razali, N., & Subramonian, S. (2020). Alkali and silane treatments towards exemplary mechanical properties of kenaf and pineapple leaf fibre-reinforced composites. Journal of Bionic Engineering, 17, 380–392. https://doi.org/10.1007/s42235-020-0031-6

  • Gourier, C., Bourmaud, A., Le Duigou, A., & Baley, C. (2017). Influence of PA11 and PP thermoplastic polymers on recycling stability of unidirectional flax fiber reinforced biocomposites. Polymer Degradation and Stability, 136, 1–9. http://doi.org/10.1016/j.polymdegradstab.2016.12.003

  • ISO 179-1. (2010) Plastics — Determination of Charpy impact properties — Part 1: Non-instrumented impact test. International Organization for Standardization. https://www.iso.org/standard/44852.html#:~:text=ISO%20179%2D1%3A2010%20specifies,and%20the%20type%20of%20notch.

  • Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fiber reinforced polymer composites: An overview. Composites Part B: Engineering, 43(7), 2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053

  • Ku, H., Wang, H., Pattarachaiyakoop, N., & Trada, M. (2011). A review on the tensile properties of natural fiber reinforced polymer composites. Composites Part B: Engineering, 42(4), 856–873. https://doi.org/10.1016/j.compositesb.2011.01.010

  • Marzuki, N. H., Wahit, M. U., Arsad, A., Othman, N., & Yusoff, N. I. S. M. (2021). The effect of kenaf loading on the mechanical properties of kenaf-reinforced recycled poly(ethylene terephthalate)/recycled poly(propylene) (rPET/rPP) composite. Materials Today: Proceedings, 39, 959–964. https://doi.org/10.1016/j.matpr.2020.04.333

  • Mohammed, L., Ansari, M. N. M., Pua, G., Jawaid, M., & Islam, M. S. (2015). A review on natural fiber reinforced polymer composite and its applications. International Journal of Polymer Science, 2015, 2015, 243947. https://doi.org/10.1155/2015/243947

  • Nikmatin, S., Syafiuddin, A., Nugroho, N., Utama, W., & Wismogroho, A. S. (2017). Thermo-physical properties of kenaf-filled acrylonitrile butadiene styrene composites. MATEC Web of Conferences, 95, 03001. https://doi.org/10.1051/matecconf/20179503001

  • Norrrahim, M. N. F., Kasim, N. A. M., Knight, V. F., Halim, N. A., Shah, N. A. A., Noor, S. A. M., Jamal, S. H., Ong, K. K., Yunus, W. M. Z. W., Farid, M. A. A., Jenol, M. A., & Ahmad, I. R. (2021). Performance evaluation of cellulose nanofiber reinforced polymer composites. Functional Composites and Structures, 3(2), 024001. https://doi.org/10.1088/2631-6331/abeef6.

  • Nurazzi, N. M., Shazleen, S. S., Aisyah, H. A., Asyraf, M. R. M., Sabaruddin, F. A., Mohidem, N. A., Norrrahim, M. N. F., Kamarudin, S. H., Ilyas, R. A., Ishak, M. R., Abdullah, N., & Nor, N. M. (2021). Effect of silane treatments on mechanical performance of kenaf fibre reinforced polymer composites: A review. Functional Composites and Structures, 3(4), 045003. https://doi.org/10.1088/2631-6331/ac351b

  • Odesanya, K. O., Ahmad, R., Jawaid, M., Bingol, S., Adebayo, G. O., & Wong, Y. H. (2021). Natural fiber-reinforced composite for ballistic applications: A review. Journal of Polymers and the Environment, 29(12), 3795–3812. https://doi.org/10.1007/s10924-021-02169-4

  • Oushabi, A., Sair, S., Oudrhiri Hassani, F., Abboud, Y., Tanane, O., & El Bouari, A. (2017). The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite. South African Journal of Chemical Engineering, 23, 116–123. https://doi.org/10.1016/j.sajce.2017.04.005

  • Owen, M. M. (2019). Preparation and characterisation of epoxy-coated kenaf fiber-filled recycled and virgin engineering polyethylene terephthalate composites [Doctoral dissertation, Ahmadu Bello University Zaria]. Ahmadu Bello University Zaria.

  • Owen, M. M., Achukwu E. O., Ishidi, E. Y., & Romli, A. Z. (2020). Development of thermally improved chrome-tanned waste leather fiber ABS composites. NSUK Journal of Science and Technology, 7(2), 107-112.

  • Owen, M. M., Achukwu, E. O., & Romli, A. Z. (2018, October 15-18). Effects of gauge length and chemical modification on the tensile properties of kenaf fibers. [Paper presentation]. Proceedings of Textile Researchers Association of Nigeria (TRAN 2018), Abuja, Nigeria.

  • Owen, M. M., Achukwu, E. O., Akil, H. M., Romli, A. Z., Zainol Abidin, M. S., Arukalam, I. O., & Ishiaku, U. S. (2022). Effect of epoxy concentrations on thermo-mechanical properties of kenaf fiber – recycled poly (ethylene terephthalate) composites. Journal of Industrial Textiles, 52, 1–26. https://doi.org/10.1177/15280837221127441

  • Owen, M. M., Achukwu, E. O., Arukalam, I. O., & Romli, A. Z. (2022). Effect of varying processing temperatures on the mechanical and microstructural properties of kenaf fiber-ABS composites for moderate temperature applications. Polymers from Renewable Resources, 13(3), 154-169. https://doi.org/10.1177/20412479221122676

  • Owen, M. M., Achukwu, E. O., Arukalam, I. O., Muhammad, M., & Romli, A. Z. (2021). Effect of processing temperatures on the thermal and mechanical properties of leather waste-ABS composites. Composites and Advanced Materials, 30, 1–10. https://doi.org/10.1177/26349833211060056

  • Owen, M. M., Achukwu, E. O., Arukalam, I. O., Talib, S., & Romli, A. Z. (2021). Improving the thermal stability and impact strength of leather wastes-ABS composites via robust experimental design. Journal of Materials and Environmental Science, 12(5), 673-685.

  • Owen, M. M., Achukwu, E. O., Hazizan, A. M., Romli, A. Z., & Ishiaku, U. S. (2022). Characterization of recycled and virgin polyethylene terephthalate composites reinforced with modified kenaf fibers for automotive application. Polymer Composites, 43(11), 7724–7738. https://doi.org/10.1002/pc.26866

  • Owen, M. M., Achukwu, E. O., Romli, A. Z., & Akil, H. M. (2023). Recent advances on improving the mechanical and thermal properties of kenaf fibers/engineering thermoplastic composites using novel coating techniques: A review. Composite Interfaces, 30(8), 849-875. https://doi.org/10.1080/09276440.2023.2179238

  • Owen, M. M., Ishiaku, U. S., Danladi, A., Dauda, B. M., & Romli, A. Z. (2018a). Mechanical properties of epoxy-coated sodium hydroxide and silane treated kenaf/recycled polyethylene terephthalate (RPET)/ composite: Effect of chemical treatment. National Symposium on Polymeric Materials 2017, 1985(1), 030001. https://doi.org/10.1063/1.5047159

  • Owen, M. M., Ishiaku, U. S., Danladi, A., Dauda, B. M., & Romli, A. Z. (2018b). The effect of surface coating and fiber loading on thermo-mechanical properties of recycled polyethylene terephthalate (RPET)/epoxy-coated kenaf fibers composites. AIP Conference Proceedings, 1985(1), 030002. https://doi.org/10.1063/1.5047160

  • Pegoretti, A. (2021). Recycling concepts for short-fiber-reinforced and particle-filled thermoplastic composites: A review. Advanced Industrial and Engineering Polymer Research, 4(2), 93–104. https://doi.org/10.1016/j.aiepr.2021.03.004

  • Radzuan, N. A. M., Ismail, N. F., Radzi, M. K. F. M., Razak, Z. B., Tharizi, I. B., Sulong, A. B., Haron, C. H. C., & Muhamad, N. (2019). Kenaf composites for automotive components: Enhancement in machinability and moldability. Polymers, 11(10), 1–10. https://doi.org/10.3390/polym11101707

  • Ramesh, M., Palanikumar, K., & Reddy, K. H. (2017). Plant fibre based bio-composites: Sustainable and renewable green materials. Renewable and Sustainable Energy Reviews, 79, 558–584. https://doi.org/10.1016/j.rser.2017.05.094

  • Razak, N. I. A., Ibrahim, N. A., Zainuddin, N., Rayung, M., & Saad, W. Z. (2014). The influence of chemical surface modification of kenaf fiber using hydrogen peroxide on the mechanical properties of biodegradable kenaf fiber/poly(lactic acid) composites. Molecules, 19, 2957-2968. https://doi.org/10.3390/molecules19032957

  • Reddy, P. V., Reddy, R. S., Rao, J. L., Krishnudu, D. M., & Prasad, P. R. (2021). An overview on natural fiber reinforced composites for structural and non-structural applications. Materials Today: Proceedings, 45(7), 6210-6215. https://doi.org/10.1016/j.matpr.2020.10.523

  • Sapuan, S. M., Pua, F. L., El-Shekeil, Y. A., & AL-Oqla, F. M. (2013). Mechanical properties of soil buried kenaf fiber reinforced thermoplastic polyurethane composites. Materials & Design, 50, 467–470. https://doi.org/10.1016/j.matdes.2013.03.013

  • Tan, C., Ahmad, I., & Heng M., (2011). Characterization of polyester composites from recycled polyethylene terephthalate reinforced with empty fruit bunch fibers. Materials & Design, 32(8-9), 4493-4501. https://doi.org/10.1016/j.matdes.2011.03.037

  • Thitithanasarn, S., Yamada, K., Ishiaku, U. S., & Hamada, H. (2013). Jute fabric reinforced engineering thermoplastic sandwich composites. I. The effect of molding time. Journal of Applied Polymer Science, 127(4), 2952–2959. https://doi.org/10.1002/app.37962

  • Thitithanasarn, S., Yamada, K., Ishiaku, U. S., & Hamada, H. (2012). The effect of curative concentration on thermal and mechanical properties of flexible epoxy coated jute fabric reinforced polyamide 6 composites. Open Journal of Composite Materials, 2(4), 133-138. https://doi.org/10.4236/ojcm.2012.24016

  • Uzochukwu, M. I., Omobolanle, T. E. Achukwu, E. O., & Akawu, I. (2020). Effect of starch content on the physico-mechanical properties of recycled polypropylene/sweet potato thermoplastic starch blend. International Journal of Recent Engineering Science, 7(2), 38-46.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST(S)-0586-2023

Download Full Article PDF

Share this article

Recent Articles