Home / Regular Issue / JTAS Vol. 31 (S1) 2023 / JST(S)-0607-2023

 

A Comprehensive Review of Real-time Monitoring and Predictive Maintenance Techniques: Revolutionizing Natural Fibre Composite Materials Maintenance with IoT

Felix Sahayaraj Arockiasamy, Indran Suyambulingam, Iyyadurai Jenish, Divya Divakaran, Sanjay Mavinkere Rangappa and Suchart Siengchin

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue S1, December 2023

DOI: https://doi.org/10.47836/pjst.31.S1.05

Keywords: Internet of Things (IoT), Natural Fiber Reinforced Polymer Composites (NFPCs), real-time monitoring, predictive maintenance, sensors

Published on: 27 October 2023

Integrating the Internet of Things (IoT) and natural fiber-reinforced polymer composites (NFPCs) can revolutionize monitoring and maintaining composites. By incorporating sensors and wireless communication technology into the composites, real-time monitoring and predictive maintenance can be achieved. This review provides a comprehensive overview of the current state-of-the-art in the use of IoT for real-time monitoring and predictive maintenance of NFPCs. This paper covers the various types of sensors used, IoT networks and protocols employed, and data analysis techniques to detect potential issues and predict failures. This paper also highlights the benefits and challenges of using IoT for composite maintenance and this technology’s future directions and potential applications. This review provides valuable insights for researchers, engineers, and practitioners in composites, the IoT, and predictive maintenance.

  • Amelia, A., Roslina, Fahmi, N., Pranoto, H., Sundawa, B. V., Hutauruk, I. S., & Arief, A. (2020, October 24). MQTT protocol implementation for monitoring of environmental based on IoT. [Paper presentation]. International Conference on Applied Science and Technology (ICAST), Padang, Indonesia. https://doi.org/10.1109/ICAST51016.2020.9557694

  • Ayvaz, S., & Alpay, K. (2021). Predictive maintenance system for production lines in manufacturing: A machine learning approach using IoT data in real-time. Expert Systems with Applications, 173, 114598. https://doi.org/10.1016/J.ESWA.2021.114598

  • Bandara, S., Herath, M., & Epaarachchi, J. (2022). Sensory methods and machine learning based damage identification of fibre-reinforced composite structures: An introductory review. Journal of Reinforced Plastics and Composites, 073168442211459. https://doi.org/10.1177/07316844221145972

  • Basarir, F., Kaschuk, J. J., & Vapaavuori, J. (2022). Perspective about cellulose-based pressure and strain sensors for human motion detection. Biosensors, 12(4), 187. https://doi.org/10.3390/BIOS12040187

  • Bledzki, A. K., Franciszczak, P., Osman, Z., & Elbadawi, M. (2015). Polypropylene biocomposites reinforced with softwood, abaca, jute, and kenaf fibers. Industrial Crops and Products, 70, 91–99. https://doi.org/10.1016/j.indcrop.2015.03.013

  • Cerracchio, P., Gherlone, M., & Tessler, A. (2015). Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads. Meccanica, 50(10), 2487–2496. https://doi.org/10.1007/S11012-015-0146-8/FIGURES/10

  • Chegdani, F., Wang, Z., El Mansori, M., & Bukkapatnam, S. T. S. (2018). Multiscale tribo-mechanical analysis of natural fiber composites for manufacturing applications. Tribology International, 122, 143–150. https://doi.org/10.1016/J.TRIBOINT.2018.02.030

  • Chen, H., Wu, J., Shi, J., Zhang, W., & Wang, H. (2021). Effect of alkali treatment on microstructure and thermal stability of parenchyma cell compared with bamboo fiber. Industrial Crops and Products, 164, 113380. https://doi.org/10.1016/j.indcrop.2021.113380

  • Cheng, J. C. P., Chen, W., Chen, K., & Wang, Q. (2020). Data-driven predictive maintenance planning framework for MEP components based on BIM and IoT using machine learning algorithms. Automation in Construction, 112, 103087. https://doi.org/10.1016/J.AUTCON.2020.103087

  • Chokshi, S., Parmar, V., Gohil, P., & Chaudhary, V. (2020). Chemical composition and mechanical properties of natural fibers. Journal of Natural Fibers, 19(10), 3942-3953. https://doi.org/10.1080/15440478.2020.1848738

  • Dayo, A. Q., Wang, A. ran, Kiran, S., Wang, J., Qureshi, K., Xu, Y. L., Zegaoui, A., Derradji, M., Babar, A. A., & Liu, W. B. (2018). Impacts of hemp fiber diameter on mechanical and water uptake properties of polybenzoxazine composites. Industrial Crops and Products, 111, 277–284. https://doi.org/10.1016/j.indcrop.2017.10.039

  • De Rosa, I. M., Santulli, C., & Sarasini, F. (2009). Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: A literature review. Composites Part A: Applied Science and Manufacturing, 40(9), 1456–1469. https://doi.org/10.1016/J.COMPOSITESA.2009.04.030

  • Diamanti, K., & Soutis, C. (2010). Structural health monitoring techniques for aircraft composite structures. Progress in Aerospace Sciences, 46(8), 342–352. https://doi.org/10.1016/J.PAEROSCI.2010.05.001

  • Fan, C., Liu, T., Gao, X., Lu, L., Yang, J., Li, Z., Li, W., Chen, Y., Sheng, S., & Fan, W. (2023). Needling model for predicting mechanical behaviours of waste cotton composites. International Journal of Mechanical Sciences, 257, 108548. https://doi.org/10.1016/j.ijmecsci.2023.108548

  • Fatima, S., Haleem, A., Bahl, S., Javaid, M., Mahla, S. K., & Singh, S. (2021). Exploring the significant applications of Internet of Things (IoT) with 3D printing using advanced materials in medical field. Materials Today: Proceedings, 45, 4844–4851. https://doi.org/10.1016/J.MATPR.2021.01.305

  • Fraser, S. A., & Van Zyl, W. E. (2022). A wearable strain sensor based on electroconductive hydrogel composites for human motion detection. Macromolecular Materials and Engineering, 307(7), 2100973. https://doi.org/10.1002/MAME.202100973

  • Goriparthi, B. K., Suman, K. N. S., & Rao, N. M. (2012). Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Composites Part A: Applied Science and Manufacturing, 43(10), 1800–1808. https://doi.org/10.1016/j.compositesa.2012.05.007

  • Guan, C. B., Liu, J. Y., Hu, L. S., & Zhang, Q. (2013). Composite environment monitoring system for edible fungus cultivation based on ZigBee technology. Advanced Materials Research, 791–793, 975–979. https://doi.org/10.4028/www.scientific.net/AMR.791-793.975

  • Guo, X., Kuang, D., Zhu, Z., Ding, Y., Ge, L., Wu, Z., Du, B., Liang, C., Meng, G., & He, Y. (2021). Humidity sensing by graphitic carbon nitride Nanosheet/TiO2Nanoparticle/Ti3C2TxNanosheet composites for monitoring respiration and evaluating the waxing of fruits. ACS Applied Nano Materials, 4(10), 11159–11167. https://doi.org/10.1021/acsanm.1c02625

  • Hallfors, N. G., Jaoude, M. A., Liao, K., Ismail, M., & Isakovic, A. F. (2017, September 12-14). Graphene oxide - Nylon ECG sensors for wearable IOT healthcare. [Paper presentation]. Sensors Networks Smart and Emerging Technologies (SENSET), Beiriut, Lebanon. https://doi.org/10.1109/SENSET.2017.8125034

  • Hallfors, N. G., Alhawari, M., Jaoude, M. A., Kifle, Y., Saleh, H., Liao, K., Ismail, M., & Isakovic, A. F. (2018). Graphene oxide: Nylon ECG sensors for wearable IoT healthcare—nanomaterial and SoC interface. Analog Integrated Circuits and Signal Processing, 96(2), 253–260. https://doi.org/10.1007/s10470-018-1116-6

  • Hasan, M. N., Nafea, M., Nayan, N., & Ali, M. S. M. (2022). Thermoelectric generator: Materials and applications in wearable health monitoring sensors and internet of things devices. Advanced Materials Technologies, 7(5), 2101203. https://doi.org/10.1002/admt.202101203

  • Hazarika, D., Gogoi, N., Jose, S., Das, R., & Basu, G. (2017). Exploration of future prospects of Indian pineapple leaf, an agro waste for textile application. Journal of Cleaner Production, 141, 580–586. https://doi.org/10.1016/j.jclepro.2016.09.092

  • He, X., Gu, J., Hao, Y., Zheng, M., Wang, L., Yu, J., & Qin, X. (2022). Continuous manufacture of stretchable and integratable thermoelectric nanofiber yarn for human body energy harvesting and self-powered motion detection. Chemical Engineering Journal, 450(1), 137937. https://doi.org/10.1016/j.cej.2022.137937

  • Indran, S., & Raj, R. E. (2015). Characterization of new natural cellulosic fiber from Cissus quadrangularis stem. Carbohydrate Polymers, 117, 392–399. https://doi.org/10.1016/j.carbpol.2014.09.072

  • Jin, X. Z., Qi, X. D., Wang, Y., Yang, J. H., Li, H., Zhou, Z. W., & Wang, Y. (2021). Polypyrrole/helical carbon nanotube composite with marvelous photothermoelectric performance for longevous and intelligent internet of things application. ACS Applied Materials and Interfaces, 13(7), 8808–8822. https://doi.org/10.1021/acsami.0c22123

  • Jose, S., Salim, R., & Ammayappan, L. (2016). An overview on production, properties, and value addition of pineapple leaf fibers (PALF). Journal of Natural Fibers, 13(3), 362-373. https://doi.org/10.1080/15440478.2015.1029194

  • Jung, K., & Kang, T. J. (2007). Cure monitoring and internal strain measurement of 3-D hybrid braided composites using fiber bragg grating sensor. Journal of Composite Materials, 41(12), 1499–1519. https://doi.org/10.1177/0021998306068088

  • Jung, W. S., Yoon, T. H., Seung Yoo, D., Park, J. H., & Choi, H. K. (2019, October 22-25). Limitation of LoRaWAN in the smart hse system for shipbuilding and onshore plant. [Paper presentation]. IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Seoul, Korea. https://doi.org/10.1109/DYSPAN.2018.8610494

  • Kalita, B. B., Jose, S., Boruah, S., Kalita, S., & Saikia, S. R. (2019). Hibiscus sabdariffa (Roselle): A potential source of bast fiber value chain of coconut fibre view project effect of water sources on broilers view project. Article in Journal of Natural Fibers, 16(1), 49–57. https://doi.org/10.1080/15440478.2017.1401504

  • Kamarudin, S. H., Basri, M. S. M., Rayung, M., Abu, F., Ahmad, S., Norizan, M. N., Osman, S., Sarifuddin, N., Desa, M. S. Z. M., Abdullah, U. H., Mohamed I., S., M., A., & Abdullah, L. C. (2022). A review on natural fiber reinforced polymer composites (NFRPC) for sustainable industrial applications. Polymers, 14(17), 3698. https://doi.org/10.3390/POLYM14173698

  • Kang, J., Liu, T., Lu, Y., Lu, L., Dong, K., Wang, S., Li, B., Yao, Y., Bai, Y., & Fan, W. (2022). Polyvinylidene fluoride piezoelectric yarn for real-time damage monitoring of advanced 3D textile composites. Composites Part B: Engineering, 245, 110229. https://doi.org/10.1016/j.compositesb.2022.110229

  • Kazi, M. K., Eljack, F., & Mahdi, E. (2021). Data-driven modeling to predict the load vs. displacement curves of targeted composite materials for industry 4.0 and smart manufacturing. Composite Structures, 258, 113207. https://doi.org/10.1016/j.compstruct.2020.113207

  • Khan, A. A., Rana, M. M., Huang, G., Mei, N., Saritas, R., Wen, B., Zhang, S., Voss, P., Rahman, E. A., Leonenko, Z., Islam, S., & Ban, D. (2020). Maximizing piezoelectricity by self-assembled highly porous perovskite–polymer composite films to enable the internet of things. Journal of Materials Chemistry A, 8(27), 13619–13629. https://doi.org/10.1039/D0TA03416A

  • Komuraiah, A., Kumar, N. S., & Prasad, B. D. (2014). Chemical composition of natural fibers and its influence on their mechanical properties. Mechanics of Composite Materials, 50(3), 359–376. https://doi.org/10.1007/s11029-014-9422-2

  • Liu, F., & Mu, J. C. (2013). The building of composite materials information system based on internet of things technology. Applied Mechanics and Materials, 281, 155–158. https://doi.org/10.4028/www.scientific.net/AMM.281.155

  • Manickam, T., Iyyadurai, J., Jaganathan, M., Babuchellam, A., Mayakrishnan, M., & Arockiasamy, F. S. (2023). Effect of stacking sequence on mechanical, water absorption, and biodegradable properties of novel hybrid composites for structural applications. International Polymer Processing, 38(1), 88-96. https://doi.org/10.1515/ipp-2022-4274

  • Marrot, L., Lefeuvre, A., Pontoire, B., Bourmaud, A., & Baley, C. (2013). Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17). Industrial Crops and Products, 51, 317–327. https://doi.org/10.1016/j.indcrop.2013.09.026

  • Mazian, B., Bergeret, A., Benezet, J. C., & Malhautier, L. (2020). Impact of field retting and accelerated retting performed in a lab-scale pilot unit on the properties of hemp fibres/polypropylene biocomposites. Industrial Crops and Products, 143, 111912. https://doi.org/10.1016/j.indcrop.2019.111912

  • Mizutani, Y., Nagashima, K., Takemoto, M., & Ono, K. (2000). Fracture mechanism characterization of cross-ply carbon-fiber composites using acoustic emission analysis. NDT and E International, 33(2), 101–110. https://doi.org/10.1016/S0963-8695(99)00030-4

  • Muhammad, A., Rahman, Md. R., Baini, R., & Bin Bakri, M. K. (2021). Applications of sustainable polymer composites in automobile and aerospace industry. In M. R. Rahman (Ed.) Advances in sustainable polymer composites (pp. 185–207). Woodhead Publishing. https://doi.org/10.1016/b978-0-12-820338-5.00008-4

  • Mwaikambo, L. Y., & Ansell, M. P. (2006). Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres. Journal of Materials Science, 41(8), 2483–2496. https://doi.org/10.1007/s10853-006-5098-x

  • Okagawa, S., Bernus, P., & Noran, O. (2022). Realtime health monitoring of composite structures using FBG sensors. IFAC-PapersOnLine, 55(19), 157–162. https://doi.org/10.1016/J.IFACOL.2022.09.200

  • Palacios, I., Placencia, J., Muñoz, M., Samaniego, V., González, S., & Jiménez, J. (2022). MQTT based event detection system for structural health monitoring of buildings. In M. Botto-Tobar, H. Cruz, A. D. Cadena & B. Durakovic (Eds.) Emerging research in intelligent systems (pp.56-70). Springer. https://doi.org/10.1007/978-3-030-96043-8_5

  • Pandey, R., Jose, S., Basu, G., & Sinha, M. K. (2021). Novel methods of degumming and bleaching of Indian flax variety tiara. Journal of Natural Fibers, 18(8), 1140-1150. https://doi.org/10.1080/15440478.2019.1687067

  • Ranasinghe, K., Sabatini, R., Gardi, A., Bijjahalli, S., Kapoor, R., Fahey, T., & Thangavel, K. (2022). Advances in integrated system health management for mission-essential and safety-critical aerospace applications. Progress in Aerospace Sciences, 128, 100758. https://doi.org/10.1016/j.paerosci.2021.100758

  • Rantheesh, J., Indran, S., Raja, S., & Siengchin, S. (2023). Isolation and characterization of novel micro cellulose from Azadirachta indica A. Juss agro-industrial residual waste oil cake for futuristic applications. Biomass Conversion and Biorefinery, 13(5), 4393-4411. https://doi.org/10.1007/s13399-022-03467-0

  • Rao, P., Bukkapatnam, S., Beyca, O., Kong, Z., & Komanduri, R. (2014). Real-time identification of incipient surface morphology variations in ultraprecision machining process. Journal of Manufacturing Science and Engineering, 136(2), 021008. https://doi.org/10.1115/1.4026210

  • Ray, S. S., & Okamoto, M. (2003). Biodegradable polylactide and its nanocomposites: Opening a new dimension for plastics and composites. Macromolecular Rapid Communications, 24(14), 815–840. https://doi.org/10.1002/marc.200300008

  • Safi, A., Ahmad, Z., Jehangiri, A. I., Latip, R., Zaman, S. K. uz, Khan, M. A., & Ghoniem, R. M. (2022). A fault tolerant surveillance system for fire detection and prevention using LoRaWAN in smart buildings. Sensors, 22(21), 8411. https://doi.org/10.3390/S22218411

  • Sahayaraj, A. F., Muthukrishnan, M., & Ramesh, M. (2022a). Experimental investigation on physical, mechanical, and thermal properties of jute and hemp fibers reinforced hybrid polylactic acid composites. Polymer Composites, 43(5), 2854–2863. https://doi.org/10.1002/pc.26581

  • Sahayaraj, A. F., Muthukrishnan, M., & Ramesh, M. (2022b). Influence of Tamarindus indica seed nano-powder on properties of Luffa cylindrica (L.) fruit waste fiber reinforced polymer composites. Polymer Composites, 43(9), 6442–6452. https://doi.org/10.1002/pc.26957

  • Samad, Y. A., Li, Y., Schiffer, A., Alhassan, S. M., & Liao, K. (2015). Graphene foam developed with a novel two-step technique for low and high strains and pressure-sensing applications. Small, 11(20), 2380–2385. https://doi.org/10.1002/smll.201403532

  • Sampath, U., Kim, H., Kim, D. G., Kim, Y. C., & Song, M. (2015). In-situ cure monitoring of wind turbine blades by using fiber bragg grating sensors and fresnel reflection measurement. Sensors, 15(8), 18229–18238. https://doi.org/10.3390/S150818229

  • Sebastian, J., Schehl, N., Bouchard, M., Boehle, M., Li, L., Lagounov, A., & Lafdi, K. (2014). Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors. Carbon, 66, 191–200. https://doi.org/10.1016/j.carbon.2013.08.058

  • Serra, T., Mateos-Timoneda, M. A., Planell, J. A., & Navarro, M. (2013). 3D printed PLA-based scaffolds. Organogenesis, 9(4), 239–244. https://doi.org/10.4161/org.26048

  • Serra, T., Planell, J. A., & Navarro, M. (2013). High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomaterialia, 9(3), 5521–5530. https://doi.org/10.1016/j.actbio.2012.10.041

  • Singh, G., Jose, S., Kaur, D., & Soun, B. (2022). Extraction and characterization of corn leaf fiber. Journal of Natural Fibers, 19(5), 1581-1591. https://doi.org/10.1080/15440478.2020.1787914

  • Stansbury, J. W., Trujillo-Lemon, M., Lu, H., Ding, X., Lin, Y., & Ge, J. (2005). Conversion-dependent shrinkage stress and strain in dental resins and composites. Dental Materials, 21(1), 56–67. https://doi.org/10.1016/j.dental.2004.10.006

  • Tachibana, S., Wang, Y. F., Sekine, T., Takeda, Y., Hong, J., Yoshida, A., Abe, M., Miura, R., Watanabe, Y., Kumaki, D., & Tokito, S. (2022). A printed flexible humidity sensor with high sensitivity and fast response using a cellulose nanofiber/carbon black composite. ACS Applied Materials and Interfaces, 14(4), 5721–5728. https://doi.org/10.1021/acsami.1c20918

  • Tinga, T., & Loendersloot, R. (2019). Physical model-based prognostics and health monitoring to enable predictive maintenance. In E. Lughofer & M. Sayed-Mouchaweh (Eds.) Predictive maintenance in dynamic systems: Advanced methods, decision support tools and real-world applications (pp.313–353). Springer. https://doi.org/10.1007/978-3-030-05645-2_11

  • Tomás, M., Jalali, S., & Silva de Vargas, A. (2022). Creep evaluation and temperature dependence in self-sensing micro carbon polymer-based composites for further development as an internet of things sensor device. Journal of Composite Materials, 56(6), 961-973. https://doi.org/10.1177/002199832110588

  • Tripathi, K. M., Vincent, F., Castro, M., & Feller, J. F. (2016). Flax fibers – epoxy with embedded nanocomposite sensors to design lightweight smart bio-composites. Nanocomposites, 2(3), 125-134. https://doi.org/10.1080/20550324.2016.1227546

  • Tripathy, A. R., Choudhury, A., Dash, A., Panigrahi, P., Kumar, S. S., Pancham, P. P., Sahu, S. K., & Mallik, S. (2021). Polymer matrix composite engineering for PDMS based capacitive sensors to achieve high-performance and broad-range pressure sensing. Applied Surface Science Advances, 3, 100062. https://doi.org/10.1016/j.apsadv.2021.100062

  • Ullah, M., Gopalraj, S. K., Gutierrez-Rojas, D., Nardelli, P., & Kärki, T. (2023). IoT framework and requirement for intelligent industrial pyrolysis process to recycle cfrp composite wastes: Application study. In C. Y. Huang, S. F., Chiu & L. Quezada (Eds.) Intelligent and transformative production in pandaemic time (pp.275–282). https://doi.org/10.1007/978-3-031-18641-7_26

  • Xiao, T., Qian, C., Yin, R., Wang, K., Gao, Y., & Xuan, F. (2021). 3D printing of flexible strain sensor array based on uv-curable multiwalled carbon nanotube/elastomer composite. Advanced Materials Technologies, 6(1), 2000745. https://doi.org/10.1002/admt.202000745

  • Yang, L., Ma, X., Peng, R., Zhai, Q., & Zhao, Y. (2017). A preventive maintenance policy based on dependent two-stage deterioration and external shocks. Reliability Engineering & System Safety, 160, 201–211. https://doi.org/https://doi.org/10.1016/j.ress.2016.12.008

  • Yang, Y., Chiesura, G., Plovie, B., Vervust, T., Luyckx, G., Degrieck, J., Sekitani, T., & Vanfleteren, J. (2018). Design and integration of flexible sensor matrix for in situ monitoring of polymer composites. ACS Sensors, 3(9), 1698–1705. https://doi.org/10.1021/acssensors.8b00425

  • Yang, Y., Guo, X., Zhu, M., Sun, Z., Zhang, Z., He, T., & Lee, C. (2023). Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth. Advanced Energy Materials, 13(1), 2203040. https://doi.org/10.1002/aenm.202203040

  • Yao, T., Chen, X., Li, J., Wu, K., & Su, X. (2023). Experimental study of tensile and flexural performances and failure mechanism of none-felt needled composites. Thin-Walled Structures, 188, 110805. https://doi.org/10.1016/j.tws.2023.110805

  • Yao, Y., Dou, H., Liu, T., Wang, S., Gao, Y., Kang, J., Gao, X., Xia, C., Lu, Y., & Fan, W. (2023). Micro- and nano-scale mechanisms of enzymatic treatment on the interfacial behaviors of sisal fiber reinforced bio-based epoxy resin. Industrial Crops and Products, 194, 116319. https://doi.org/10.1016/j.indcrop.2023.116319

  • Zafar, S., Miraj, G., Baloch, R., Murtaza, D., & Arshad, K. (2018). An IoT based real-time environmental monitoring system using arduino and cloud service. Technology & Applied Science Research, 8(4), 3238–3242.

  • Zhu, Z., Wu, H., Ye, C., & Fu, W. (2017). Enhancement on mechanical and thermal properties of PLA biocomposites due to the addition of hybrid sisal fibers. Journal of Natural Fibers, 14(6), 875–886. https://doi.org/10.1080/15440478.2017.1302382

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST(S)-0607-2023

Download Full Article PDF

Share this article

Recent Articles