Home / Regular Issue / JTAS Vol. 31 (S1) 2023 / JST(S)-0611-2023

 

Effect of Coconut Fiber Loading on the Morphological, Thermal, and Mechanical Properties of Coconut Fiber Reinforced Thermoplastic Starch/Beeswax Composites

Ridhwan Jumaidin, Syahmah Shafie, Rushdan Ahmad Ilyas and Muchlis

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue S1, December 2023

DOI: https://doi.org/10.47836/pjst.31.S1.09

Keywords: Coconut fiber, cellulose, mechanical, natural fiber, thermal, thermoplastic starch

Published on: 27 October 2023

The increasing concern about global warming and the accumulation of non-biodegradable plastic has caused serious environmental issues. Hence, the need to create a more environmentally friendly material such as thermoplastic starch (TPS) has grown. However, the poor properties of TPS, such as high moisture sensitivity and low mechanical properties, have limited the potential application of this biopolymer. This study aims to modify TPS’s thermal and mechanical properties by incorporating coconut fiber. The composites were prepared by incorporating various coconut fiber loading (0, 10, 20, 30, 40, and 50 wt.%) into the TPS matrix. The mixture was fabricated using a hot press at 145°C for 1 hour. The sample is then characterized using thermogravimetric analysis and tensile and flexural tests. The results show that the composite with 50 wt.% coconut fiber had higher thermal stability than samples with lower fiber content. A significant increment in tensile strength and modulus of up to 20.7 MPa and 2890 MPa were recorded for samples with 50 wt.% fiber content—the sample with 50 wt.% fiber also demonstrated the highest flexural strength and modulus of up to 30.3 MPa and 3266.3 MPa, respectively. These changes are consistent with the FTIR and SEM findings, which show good compatibility of TPCS and coconut fiber with a homogeneous structure. Overall, coconut fiber shows good potential as reinforcement for biodegradable-based polymer composites.

  • Alemdar, A., & Sain, M. (2008). Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Composites Science and Technology, 68(2), 557–565. https://doi.org/10.1016/j.compscitech.2007.05.044

  • Asyraf, M. R. M., Syamsir, A., Supian, A. B. M., Usman, F., Ilyas, R. A., Nurazzi, N. M., Norrrahim, M. N. F., Razman, M. R., Zakaria, S. Z. S., Sharma, S., Itam, Z., & Rashid, M. Z. A. (2022). Sugar palm fibre-reinforced polymer composites: Influence of chemical treatments on its mechanical properties. Materials, 15(11). https://doi.org/10.3390/ma15113852

  • Azra, N. A., Atiqah, A., Jalar, A., Manar, G., Supian, A. B. M., & Ilyas, R. A. (2023). Sustainable substrate tin oxide/nanofibril cellulose/thermoplastic starch: Dimensional stability and tensile properties. Journal of Materials Research and Technology, 26, 99–108. https://doi.org/10.1016/j.jmrt.2023.07.088

  • Bahloul, A., Semlali, F. Z., Oumam, M., Hannache, H., Kassab, Z., & El Achaby, M. (2023). Starch bio-nanocomposites based on phosphorylated and sulphated cellulose nanocrystals extracted from pepper plant residue: Effect of surface functionality on property improvements. Cellulose, 30(8), 5051–5070. https://doi.org/10.1007/s10570-023-05199-4

  • Borowski, G., Klepka, T., Pawłowska, M., Lavagnolo, M. C., Oniszczuk, T., Wójtowicz, A., & Combrzyński, M. (2020). Effect of flax fibers addition on the mechanical properties and biodegradability of biocomposites based on thermoplastic starch. Archives of Environmental Protection, 46(2), 74–82. https://doi.org/10.24425/aep.2020.133477

  • Dhakal, H. N., Zhang, Z. Y., & Richardson, M. O. W. (2007). Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Composites Science and Technology, 67(7–8), 1674–1683. https://doi.org/10.1016/j.compscitech.2006.06.019

  • Diyana, Z. N., Jumaidin, R., Selamat, M. Z., & Suan, M. S. M. (2021). Thermoplastic starch / beeswax blend : Characterization on thermal mechanical and moisture absorption properties. International Journal of Biological Macromolecules, 190, 224–232. https://doi.org/10.1016/j.ijbiomac.2021.08.201

  • Fabunmi, O. O., Tabil, L. G., Panigrahi, S., & Chang, P. R. (2011). Effects of incorporating polycaprolactone and flax fiber into glycerol-plasticized pea starch. Journal of Polymers and the Environment, 19(4), 841–848. https://doi.org/10.1007/s10924-011-0374-5

  • Gironès, J., López, J. P., Mutjé, P., Carvalho, A. J. F., Curvelo, A. A. S., & Vilaseca, F. (2012). Natural fiber-reinforced thermoplastic starch composites obtained by melt processing. Composites Science and Technology, 72(7), 858–863. https://doi.org/10.1016/j.compscitech.2012.02.019

  • Gomes, Á. V. R., Gonçalves, F. C. P., da Silva, M. Q. J., da, Leite, R. H. L., dos Santos, F. K. G., & Aroucha, E. M. M. (2019). Effect of carnauba wax and coconut fiber contents on tensile properties of corn starch-based biocomposites. Materials Research, 22(suppl 1). https://doi.org/10.1590/1980-5373-mr-2019-0053

  • Gómez, C., Torres, F. G., Nakamatsu, J., & Arroyo, O. H. (2006). Thermal and structural analysis of natural fiber reinforced starch-based biocomposites. International Journal of Polymeric Materials and Polymeric Biomaterials, 55(11), 893–907. https://doi.org/10.1080/00914030500522547

  • Hazrol, M. D., Sapuan, S. M., Zainudin, E. S., Wahab, N. I. A., & Ilyas, R. A. (2022). Effect of kenaf fibre as reinforcing fillers in corn starch-based biocomposite film. Polymers, 14(8), 1590. https://doi.org/10.3390/polym14081590

  • Ilyas, R. A., Sapuan, S. M., Atiqah, A., Ibrahim, R., Abral, H., Ishak, M. R., Zainudin, E. S., Nurazzi, N. M., Atikah, M. S. N., Ansari, M. N. M., Asyraf, M. R. M., Supian, A. B. M., & Ya, H. (2020). Sugar palm (Arenga pinnata [Wurmb.] Merr) starch films containing sugar palm nanofibrillated cellulose as reinforcement: Water barrier properties. Polymer Composites, 41(2), 459-467. https://doi.org/10.1002/pc.25379

  • Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Abral, H., Ishak, M. R., Zainudin, E. S., Asrofi, M., Atikah, M. S. N., Huzaifah, M. R. M., Radzi, A. M., Azammi, A. M. N., Shaharuzaman, M. A., Nurazzi, N. M., Syafri, E., Sari, N. H., Norrrahim, M. N. F., & Jumaidin, R. (2019). Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale. Journal of Materials Research and Technology, 8(3), 2753-2766. https://doi.org/10.1016/j.jmrt.2019.04.011

  • Ilyas, R. A., Sapuan, S. M., & Ishak, M. R. (2017). Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers, 181, 1038-1051. https://doi.org/10.1016/j.carbpol.2017.11.045

  • Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2017). Effect of delignification on the physical, thermal, chemical, and structural properties of sugar palm fibre. BioResources, 12(4), 8734–8754. https://doi.org/10.15376/biores.12.4.8734-8754

  • Ilyas, R. A., Sapuan, S. M., Ishak, M. R., & Zainudin, E. S. (2018). Development and characterization of sugar palm nanocrystalline cellulose reinforced sugar palm starch bionanocomposites. Carbohydrate Polymers, 202, 186–202. https://doi.org/10.1016/j.carbpol.2018.09.002

  • Jumaidin, R., Whang, L. Y., Ilyas, R. A., Hazrati, K. Z., Hafila, K. Z., Jamal, T., & Alia, R. A. (2023). Effect of durian peel fiber on thermal, mechanical, and biodegradation characteristics of thermoplastic cassava starch composites. International Journal of Biological Macromolecules, 250, 126295. https://doi.org/10.1016/j.ijbiomac.2023.126295

  • Jumaidin, R., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties. International Journal of Biological Macromolecules, 89, 575-581. https://doi.org/10.1016/j.ijbiomac.2016.05.028

  • Jumaidin, R., Khiruddin, M. A. A., Saidi, Z. A. S., Salit, M. S., & Ilyas, R. A. (2020). Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite. International Journal of Biological Macromolecules, 146, 746–755. https://doi.org/10.1016/j.ijbiomac.2019.11.011

  • Kamaruddin, Z. H., Jumaidin, R., Ilyas, R. A., Selamat, M. Z., Alamjuri, R. H., & Yusof, F. A. M. (2022). Biocomposite of cassava starch-cymbopogan citratus fibre : Mechanical , thermal , and biodegradation properties. Polymers, 14(3), 514. https://doi.org/10.3390/polym14030514

  • Khalil, H. P. S. A., Firoozian, P., Bakare, I. O., Akil, H. M., & Noor, A. M. (2010). Exploring biomass based carbon black as filler in epoxy composites: Flexural and thermal properties. Materials and Design, 31(7), 3419–3425. https://doi.org/10.1016/j.matdes.2010.01.044

  • Khalili, H., Bahloul, A., Ablouh, E. H., Sehaqui, H., Kassab, Z., Hassani, F. Z. S. A., & El Achaby, M. (2023). Starch biocomposites based on cellulose microfibers and nanocrystals extracted from alfa fibers (Stipa tenacissima). International Journal of Biological Macromolecules, 226, 345–356. https://doi.org/10.1016/j.ijbiomac.2022.11.313

  • Kwaśniewska, A., Chocyk, D., Gładyszewski, G., Borc, J., Świetlicki, M., & Gładyszewska, B. (2020). The influence of kaolin clay on the mechanical properties and structure of thermoplastic starch films. Polymers, 12(1), 73. https://doi.org/10.3390/polym12010073

  • Lai, C. Y., Sapuan, S. M., Ahmad, M., Yahya, N., & Dahlan, K. Z. H. M. (2005). Mechanical and electrical properties of coconut coir fiber-reinforced polypropylene composites. Polymer-Plastic Technology and Engineering, 44(4), 619–632. https://doi.org/10.1081/PTE-200057787

  • Lomelí-Ramírez, M. G., Kestur, S. G., Manríquez-González, R., Iwakiri, S., De Muniz, G. B., & Flores-Sahagun, T. S. (2014). Bio-composites of cassava starch-green coconut fiber: Part II - Structure and properties. Carbohydrate Polymers, 102(1), 576–583. https://doi.org/10.1016/j.carbpol.2013.11.020

  • Lomelí-Ramírez, M. G., Satyanarayana, K. G., Iwakiri, S., De Muniz, G. B., Tanobe, V., & Flores-Sahagun, T. S. (2011). Study of the properties of biocomposites. Part I. Cassava starch-green coir fibers from Brazil. Carbohydrate Polymers, 86(4), 1712–1722. https://doi.org/10.1016/j.carbpol.2011.07.002

  • Ma, X., Chang, P. R., Yu, J., & Stumborg, M. (2009). Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydrate Polymers, 75(1), 1–8. https://doi.org/10.1016/j.carbpol.2008.05.020

  • Ma, X., Yu, J., & Kennedy, J. F. (2005). Studies on the properties of natural fibers-reinforced thermoplastic starch composites. Carbohydrate Polymers, 62(1), 19–24. https://doi.org/10.1016/j.carbpol.2005.07.015

  • Martinelli, F. R. B., Ribeiro, F. R. C., Marvila, M. T., Monteiro, S. N., Filho, F. D. C. G., & Azevedo, A. R. G. D. (2023). A review of the use of coconut fiber in cement composites. Polymers, 15(5), 1309. https://doi.org/10.3390/polym15051309

  • Meráz-Rivera, J., Cruz-Rivero, L., Méndez-Hernández, M. L., Rivera-Armenta, J. L., Angeles-Herrera, D., & Ramírez-López, C. (2020). Development of a composite from TPS–EVOH–SBR reinforced with coconut fiber. Sustainability, 12(19), 7838. https://doi.org/10.3390/su12197838

  • Nansu, W., Ross, S., Ross, G., & Mahasaranon, S. (2019). Effect of crosslinking agent on the physical and mechanical properties of a composite foam based on cassava starch and coconut residue fiber. Materials Today: Proceedings, 17(4), 2010-2019. https://doi.org/10.1016/j.matpr.2019.06.249

  • Nazrin, A., Sapuan, S. M., & Zuhri, M. Y. M. (2020). Mechanical, physical and thermal properties of sugar palm nanocellulose reinforced thermoplastic Starch (TPS)/poly (lactic acid)(PLA) blend bionanocomposites. Polymers, 12(10), 2216. https://doi.org/10.3390/polym12102216

  • Nazrin, A., Sapuan, S. M., Zuhri, M. Y. M., Tawakkal, I. S. M. A., & Ilyas, R. A. (2021). Water barrier and mechanical properties of sugar palm crystalline nanocellulose reinforced thermoplastic sugar palm starch (TPS)/poly(lactic acid) (PLA) blend bionanocomposites. Nanotechnology Reviews, 10(1), 431–442. https://doi.org/10.1515/ntrev-2021-0033

  • Norfarhana, A. S., Ilyas, R. A., & Ngadi, N. (2022). A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment. Carbohydrate Polymers, 291, 119563. https://doi.org/10.1016/j.carbpol.2022.119563

  • Norrrahim, M. N. F., Norizan, M. N., Jenol, M. A., Farid, M. A. A., Janudin, N., Ujang, F. A., Yasim-Anuar, T. A. T., Najmuddin, S. U. F. S., & Ilyas, R. A. (2021). Emerging development on nanocellulose as antimicrobial material: An overview. Materials Advances, 2(11), 3538-3551. https://doi.org/10.1039/d1ma00116g

  • Prachayawarakorn, J., Chaiwatyothin, S., Mueangta, S., & Hanchana, A. (2013). Effect of jute and kapok fibers on properties of thermoplastic cassava starch composites. Materials and Design, 47, 309–315. https://doi.org/10.1016/j.matdes.2012.12.012

  • Prachayawarakorn, J., Ruttanabus, P., & Boonsom, P. (2011). Effect of cotton fiber contents and lengths on properties of thermoplastic starch composites prepared from rice and waxy rice starches. Journal of Polymers and the Environment, 19, 274–282. https://doi.org/10.1007/s10924-010-0273-1

  • Saepoo, T., Sarak, S., Mayakun, J., Eksomtramage, T., & Kaewtatip, K. (2023). Thermoplastic starch composite with oil palm mesocarp fiber waste and its application as biodegradable seeding pot. Carbohydrate Polymers, 299, 120221. https://doi.org/10.1016/j.carbpol.2022.120221

  • Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2016). Palm fiber reinforced starch. BioResources, 11(2), 4134–4145. https://doi.org/10.15376/biores.11.2.4134-4145

  • Santafé Júnior, H. P., Lopes, F. P. D., Costa, L. L., & Monteiro, S. N. (2010). Mechanical properties of tensile tested coir fiber reinforced polyester composites. Revista Materia, 15(2), 113-118.

  • Surnam, B. Y. R., & Imrith, G. (2023). Investigation on the mechanical properties of coconut leaf stalk fibres reinforced composites. Journal of Natural Fibers, 20(2), 2198276. https://doi.org/10.1080/15440478.2023.2198276

  • Tarique, J., Zainudin, E. S., Sapuan, S. M., Ilyas, R. A., & Khalina, A. (2022). Physical, mechanical, and morphological performances of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites. Polymers, 14(3), 388. https://doi.org/10.3390/polym14030388

  • Thakur, R., Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079-1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190

  • Tongdeesoontorn, W., Mauer, L. J., Wongruong, S., Sriburi, P., & Rachtanapun, P. (2011). Effect of carboxymethyl cellulose concentration on physical properties of biodegradable cassava starch-based films. Chemistry Central Journal, 5(1), 1–8. https://doi.org/10.1186/1752-153X-5-6

  • Wang, F. C., Feve, M., Lam, T. M., & Pascault, J. P. (1994). FTIR analysis of hydrogen bonding in amorphous linear aromatic polyurethanes. II. Influence of styrene solvent. Journal of Polymer Science Part B: Polymer Physics, 32(8), 1315–1320. https://doi.org/10.1002/polb.1994.090320802

  • Wang, S., Zhang, P., Li, Y., Li, J., Li, X., Yang, J., Ji, M., Li, F., & Zhang, C. (2023). Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydrate Polymers, 307, 120627. https://doi.org/10.1016/j.carbpol.2023.120627

  • Yokesahachart, C., Yoksan, R., Khanoonkon, N., Mohanty, A. K., & Misra, M. (2021). Effect of jute fibers on morphological characteristics and properties of thermoplastic starch/biodegradable polyester blend. Cellulose, 28(9), 5513–5530. https://doi.org/10.1007/s10570-021-03921-8

  • Zainuddin, S. Y. Z., Ahmad, I., Kargarzadeh, H., Abdullah, I., & Dufresne, A. (2013). Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites. Carbohydrate Polymers, 92(2), 2299–2305. https://doi.org/10.1016/j.carbpol.2012.11.106

  • Zhou, W., Zha, D., Zhang, X., Xu, J., Guo, B., & Huang, Y. (2020). Ordered long polyvinyl alcohol fiber-reinforced thermoplastic starch composite having comparable mechanical properties with polyethylene and polypropylene. Carbohydrate Polymers, 250, 116913. https://doi.org/10.1016/j.carbpol.2020.116913

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST(S)-0611-2023

Download Full Article PDF

Share this article

Recent Articles