PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 30 (1) Jan. 2022 / JST-2755-2021

 

MYLPHerb-1: A Dataset of Malaysian Local Perennial Herbs for the Study of Plant Images Classification under Uncontrolled Environment

Kalananthni Pushpanathan, Marsyita Hanafi, Syamsiah Masohor and Wan Fazilah Fazlil Ilahi

Pertanika Journal of Tropical Agricultural Science, Volume 30, Issue 1, January 2022

DOI: https://doi.org/10.47836/pjst.30.1.23

Keywords: Deep learning, leaf identification, medicinal plants, perennial herbs, plant dataset

Published on: 10 January 2022

Research in the medicinal plants’ recognition field has received great attention due to the need of producing a reliable and accurate system that can recognise medicinal plants under various imaging conditions. Nevertheless, the standard medicinal plant datasets publicly available for research are very limited. This paper proposes a dataset consisting of 34200 images of twelve different high medicinal value local perennial herbs in Malaysia. The images were captured under various imaging conditions, such as different scales, illuminations, and angles. It will enable larger interclass and intraclass variability, creating abundant opportunities for new findings in leaf classification. The complexity of the dataset is investigated through automatic classification using several high-performance deep learning algorithms. The experiment results showed that the dataset creates more opportunities for advanced classification research due to the complexity of the images. The dataset can be accessed through https://www.mylpherbs.com/.

  • Abdelwahab, S. I., Mohan, S., Elhassan, M. M., Al-Mekhlafi, N., Mariod, A. A., Abdul, A. B., Abdulla, M. A., & Alkharfy, K. M. (2010). Antiapoptotic and antioxidant properties of Orthosiphon stamineus benth (Cat’s Whiskers): intervention in the Bcl-2-mediated apoptotic pathway. Evidence-Based Complementary and Alternative Medicine, 2011, Article 156765. https://doi.org/10.1155/2011/156765

  • Alam, A., Ferdosh, S., Ghafoor, K., Hakim, A., Juraimi, A. S., Khatib, A., & Sarker, Z. I. (2016). Clinacanthus nutans: A review of the medicinal uses, pharmacology and phytochemistry. Asian Pacific Journal of Tropical Medicine, 9(4), 402-409. https://doi.org/10.1016/j.apjtm.2016.03.011

  • Arun, C. H., Emmanuel, W. S., & Durairaj, D. C. (2013). Texture feature extraction for identification of medicinal plants and comparison of different classifiers. International Journal of Computer Applications, 62(12), 1-9. https://doi.org/10.5120/10129-4920

  • Ashaari, N. S., Rahim, M. H. A., Sabri, S., Lai, K. S., Song, A. A. L., Rahim, R. A., Abdullah, W. M. A. N. W., & Abdullah, J. O. (2020). Functional characterization of a new terpene synthase from Plectranthus amboinicus. PloS one, 15(7), Article e0235416. https://doi.org/10.1371/journal.pone.0235416

  • Ashraf, K., Halim, H., Lim, S. M., Ramasamy, K., & Sultan, S. (2020). In vitro antioxidant, antimicrobial and antiproliferative studies of four different extracts of Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea. Saudi Journal of Biological Sciences, 27(1), 417-432. https://doi.org/10.1016/j.sjbs.2019.11.003

  • Ashraf, K., Sultan, S., & Adam, A. (2018). Orthosiphon stamineus Benth. is an outstanding food medicine: Review of phytochemical and pharmacological activities. Journal of Pharmacy & Bioallied Sciences, 10(3), 109-118. https://doi.org/10.4103/jpbs.JPBS_253_17

  • Begue, A., Kowlessur, V., Mahomoodally, F., Singh, U., & Pudaruth, S. (2017). Automatic recognition of medicinal plants using machine learning techniques. International Journal of Advanced Computer Science and Applications, 8(4), 166-175. https://doi.org/10.14569/IJACSA.2017.080424

  • Bhatt, P., Joseph, G., Negi, P., & Varadaraj, M. (2013). Chemical composition and nutraceutical potential of Indian borage (Plectranthus amboinicus) stem extract. Journal of Chemistry, 2013, 1-7. https://doi.org/10.1155/2013/320329

  • Christapher, P., Parasuraman, S., Christina, J., Vikneswaran, M., & Asmawi, M. (2015). Review on Polygonum minus. Huds, a commonly used food additive in Southeast Asia. Pharmacognosy Research, 7(1), 1-6. https://doi.org/10.4103/0974-8490.147125

  • Dahigaonkar, T. D., & Kalyane, R. (2018). Identification of ayurvedic medicinal plants by image processing of leaf samples. International Research Journal of Engineering and Technology (IRJET), 5, 351-355

  • Deshpande, P. (2017). Formulation and evaluation of herbal wound healing formulation of Centella asiatica. World Journal of Pharmaceutical Research, 1335-1345. https://doi.org/10.20959/wjpr20176-8658

  • dos Santos, M. S., dos Santos Souza, L. E., Costa, C. A. S., Gomes, F. P., do Bomfim Costa, L. C., de Oliveira, R. A., & da Costa Silva, D. (2016). Effects of water deficit on morpho physiology, productivity and chemical composition of Ocimum africanum Lour (Lamiaceae). African Journal of Agricultural Research, 11(21), 1924-1934. https://doi.org/10.5897/AJAR2015.10248

  • Giribabu, N., Karim, K., Kilari, E. K., Nelli, S. R., & Salleh, N. (2020). Oral administration of Centella asiatica (L.) urb leave aqueous extract ameliorates cerebral oxidative stress, inflammation, and apoptosis in male rats with type-2 diabetes. Inflammopharmacology, 28(6), 1599-1622. https://doi.org/10.1007/s10787-020-00733-3

  • Gohil, K., Patel, J., & Gajjar, A. (2010). Pharmacological review on Centella asiatica: A potential herbal cure-all. Indian Journal of Pharmaceutical Sciences, 72(5), 546-556. https://doi.org/10.4103/0250-474X.78519

  • Habiba, S. U., Islam, M. K., & Ahsan, S. M. M. (2019). Bangladeshi plant recognition using deep learning-based leaf classification. In 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2) (pp. 1-4). IEEE Publishing. https://doi.org/10.1109/IC4ME247184.2019.9036515

  • Haida, Z., Nakasha, J. J., & Hakiman, M. (2020). In vitro responses of plant growth factors on growth, yield, phenolics content and antioxidant activities of Clinacanthus nutans (Sabah snake grass). Plants, 9(8), Article 1030. https://doi.org/10.3390/plants9081030

  • Harsani, P., & Qurania, A. (2016). Medicinal plant species identification system using texture analysis and median filter. Jurnal Ilmiah Kursor, 8(4), 181-188. https://doi.org/10.28961/kursor.v8i4.112

  • He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep residual learning for image recognition. arXiv preprint. https://doi.org/10.1109/CVPR.2016.90

  • Janani, R., & Gopal, A. (2013). Identification of selected medicinal plant leaves using image features and ANN. In 2013 International Conference on Advanced Electronic Systems (ICAES) (pp. 238-242). IEEE Publishing. https://doi.org/10.1109/ICAES.2013.6659400

  • Karthika, S. (2020). Investigating apoptotic effects of different extracts of medicinal plants on SH-SY5Y cells. International Journal of Green Pharmacy (IJGP), 14(02), 175-178.

  • Khoo, L. W., Kow, S. A., Lee, M. T., Tan, C. P., Shaari, K., Tham, C. L., & Abas, F. (2018). A comprehensive review on phytochemistry and pharmacological activities of Clinacanthus nutans (Burm. F.) Lindau. Evidence-Based Complementary and Alternative Medicine, 2018, Article 9276260. https://doi.org/10.1155/2018/9276260

  • Kurzawa, M., Filipiak-Szok, A., Kłodzińska, E., & Szłyk, E. (2015). Determination of phytochemicals, antioxidant activity and total phenolic content in Andrographis paniculata using chromatographic methods. Journal of Chromatography B, 995, 101-106. https://doi.org/10.1016/j.jchromb.2015.05.021

  • Lau, H., Shahar, S., Mohamad, M., Rajab, N. F., Yahya, H. M., Din, N. C., & Hamid, H. A. (2020). The effects of six months Persicaria minor extract supplement among older adults with mild cognitive impairment: A double-blinded, randomized, and placebo-controlled trial. BMC Complementary Medicine and Therapies, 20(1), 1-15. https://doi.org/10.1186/s12906-020-03092-2

  • Lulekal, E., Kelbessa, E., Bekele, T., & Yineger, H. (2008). An ethnobotanical study of medicinal plants in Mana Angetu District, Southeastern Ethiopia. Journal of Ethnobiology and Ethnomedicine, 4(1), 1-10. https://doi.org/10.1186/1746-4269-4-10

  • Majdi, C., Pereira, C., Dias, M. I., Calhelha, R. C., Alves, M. J., Rhourri-Frih, B., Charrouf, Z., Barros, L., Amaral, J. A., & Ferreira, I. C. (2020). Phytochemical characterization and bioactive properties of cinnamon basil (Ocimum basilicum cv. ‘Cinnamon’) and lemon basil (Ocimum× citriodorum). Antioxidants, 9(5), Article 369. https://doi.org/10.3390/antiox9050369

  • Mandal, M., Misra, D., Ghosh, N. N., & Mandal, V. (2017). Physicochemical and elemental studies of Hydrocotyle javanica Thunb. for standardization as herbal drug. Asian Pacific Journal of Tropical Biomedicine, 7(11), 979-986. https://doi.org/10.1016/j.apjtb.2017.10.001

  • Mandal, M., Paul, S., Uddin, M. R., Mondal, M. A., Mandal, S., & Mandal, V. (2016). In vitro antibacterial potential of Hydrocotyle javanica Thunb. Asian Pacific Journal of Tropical Disease, 6(1), 54-62. https://doi.org/10.1016/S2222-1808(15)60985-9

  • Murugan, N. A., Pandian, C. J., & Jeyakanthan, J. (2020). Computational investigation on Andrographis paniculata phytochemicals to evaluate their potency against SARS-CoV-2 in comparison to known antiviral compounds in drug trials. Journal of Biomolecular Structure and Dynamics, 39(12), 4415-4426. https://doi.org/10.1080/07391102.2020.1777901

  • Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), 1-21. https://doi.org/10.1186/s40537-014-0007-7

  • Okhuarobo, A., Falodun, J. E., Erharuyi, O., Imieje, V., Falodun, A., & Langer, P. (2014). Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pacific Journal of Tropical Disease, 4(3), 213-222. https://doi.org/10.1016/S2222-1808(14)60509-0

  • OSU. (2021). Plant identification: Examining leaves. Oregon State University. Retrieved January 2, 2021, from https://landscapeplants.oregonstate.edu/plant-identification-examining-leaves

  • Pornpanomchai, C., Rimdusit, S., Tanasap, P., & Chaiyod, C. (2011). Thai herb leaf image recognition system (THLIRS). Agriculture and Natural Resources, 45(3), 551-562.

  • Proklamasiningsih, E., Budisantoso, I., Kamsinah, K., & Widodo, P. (2020). Antioxidant activity and flavonoid contents of daun dewa (Gynura pseudochina) in various substrates with humic acid treatment. In IOP Conference Series: Earth and Environmental Science (Vol. 593, No. 1, p. 012026). IOP Publishing. https://doi.org/10.1088/1755-1315/593/1/012026

  • Rahman, A., & Asad, M. (2013). Chemical and biological investigations of the leaves of Gynura procumbens. International Journal of Biosciences 3(4), 36-43. https://doi.org/10.12692/ijb/3.4.36-43

  • Rangarajan, A. K., & Purushothaman, R. (2020). Disease classification in eggplant using pre-trained VGG16 and MSVM. Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-59108-x

  • Sack, L., & Scoffoni, C. (2013). Leaf venation: Structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198(4), 983-1000. https://doi.org/10.1111/nph.12253

  • Sahu, P. K., Singh, S., Gupta, A. R., Gupta, A., Singh, U. B., Manzar, N., Bhowmik, A., Singh, H. V., & Saxena, A. K. (2020). Endophytic bacilli from medicinal-aromatic perennial Holy basil (Ocimum tenuiflorum L.) modulate plant growth promotion and induced systemic resistance against Rhizoctonia solani in rice (Oryza sativa L.). Biological Control, 150, Article 104353. https://doi.org/10.1016/j.biocontrol.2020.104353

  • Samidurai, D., Pandurangan, A. K., Krishnamoorthi, S. K., Perumal, M. K., & Nanjian, R. (2020). Sinensetin isolated from Orthosiphon aristatus inhibits cell proliferation and induces apoptosis in hepatocellular carcinoma cells. Process Biochemistry, 88, 213-221. https://doi.org/10.1016/j.procbio.2019.09.031

  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520). IEEE Publishing. https://doi.org/10.1109/CVPR.2018.00474

  • Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv preprint.

  • Singh, D., & Chaudhuri, P. K. (2018). A review on phytochemical and pharmacological properties of Holy basil (Ocimum sanctum L.). Industrial Crops and Products, 118, 367-382. https://doi.org/10.1016/j.indcrop.2018.03.048

  • Singh, V., & Misra, A. K. (2017). Detection of plant leaf diseases using image segmentation and soft computing techniques. Information Processing in Agriculture, 4(1), 41-49. https://doi.org/10.1016/j.inpa.2016.10.005

  • Siriwatanametanon, N., & Heinrich, M. (2011). The Thai medicinal plant Gynura pseudochina var. hispida: Chemical composition and in vitro NF-κB inhibitory activity. Natural Product Communications, 6(5). https://doi.org/10.1177/1934578X1100600512

  • Siriwatanametanon, N., Fiebich, B. L., Efferth, T., Prieto, J. M., & Heinrich, M. (2010). Traditionally used Thai medicinal plants: In vitro anti-inflammatory, anticancer and antioxidant activities. Journal of Ethnopharmacology, 130(2), 196-207. https://doi.org/10.1016/j.jep.2010.04.036

  • Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., & Stefanovic, D. (2016). Deep neural networks-based recognition of plant diseases by leaf image classification. Computational Intelligence and Neuroscience, 2016, Article 3289801. https://doi.org/10.1155/2016/3289801

  • Swamy, M., Arumugam, G., Kaur, R., Ghasemzadeh, A., Yusoff, M., & Sinniah, U. (2017). GC-MS based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus Leaves. Evidence-Based Complementary and Alternative Medicine, 2017, Article 1517683. https://doi.org/10.1155/2017/1517683

  • Tan, H. L., Chan, K. G., Pusparajah, P., Lee, L. H., & Goh, B. H. (2016). Gynura procumbens: An overview of the biological activities. Frontiers in Pharmacology, 7, Article 52. https://doi.org/10.3389/fphar.2016.00052

  • Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International Conference on Machine Learning (pp. 6105-6114). PMLR.

  • Vijayashree, T., & Gopal, A. (2017). Authentication of herbal medicinal leaf image processing using Raspberry Pi processor. In 2017 International Conference on Intelligent Computing and Control Systems (ICICCS) (pp. 1304-1307). IEEE Publishing. https://doi.org/10.1109/ICCONS.2017.8250679

  • Vimala, S., Rohana, S., Rashih, A., & Juliza, M. (2012). Antioxidant evaluation in Malaysian medicinal plant: Persicaria minor (Huds.) leaf. Science Journal of Medicine and Clinical Trials, 1, 9-16.

  • Wäldchen, J., & Mäder, P. (2018a). Machine learning for image-based species identification. Methods in Ecology and Evolution, 9(11), 2216-2225. https://doi.org/10.1111/2041-210X.13075

  • Wäldchen, J., & Mäder, P. (2018b). Plant species identification using computer vision techniques: A systematic literature review. Archives of Computational Methods in Engineering, 25(2), 507-543. https://doi.org/10.1007/s11831-016-9206-z

  • Wäldchen, J., Rzanny, M., Seeland, M., & Mäder, P. (2018). Automated plant species identification - Trends and future directions. PLoS Computational Biology, 14(4), Article e1005993. https://doi.org/10.1371/journal.pcbi.1005993

  • Yamani, H. A., Pang, E. C., Mantri, N., & Deighton, M. A. (2016). Antimicrobial activity of Tulsi (Ocimum tenuiflorum) essential oil and their major constituents against three species of bacteria. Frontiers in Microbiology, 7, Article 681. https://doi.org/10.3389/fmicb.2016.00681