Home / Regular Issue / JTAS Vol. 30 (2) Apr. 2022 / JST-2788-2021

 

Thermo-Electrical Behavior of Al2O3 and SiO2 Nanofluids in A Proton-Exchange Membrane Fuel Cell (PEMFC) Cooling Channel

Muhammad Amirul Nadim Zarizi, Irnie Azlin Zakaria, Mohamad Noor Izwan Johari, Wan Ahmad Najmi Wan Mohamed and Raja Mazuir Raja Ahsan Shah

Pertanika Journal of Tropical Agricultural Science, Volume 30, Issue 2, April 2022

DOI: https://doi.org/10.47836/pjst.30.2.29

Keywords: Current drop, heat transfer, nanofluids, PEM fuel cell

Published on: 1 April 2022

Proton Exchange Membrane Fuel Cell (PEMFC) generates electricity through the reaction of hydrogen and oxygen. PEMFC is considered clean technology since the by-products of the reaction are only electricity, water, and heat. Thermal management of PEMFC can be further improved through the adoption of nanofluids as its cooling medium. Nanofluids are fluids that contain suspensions of nanoparticles in their base fluid. Nanofluids have better heat transfer performance as compared to their base fluid due to their significant thermal conductivity improvement. However, unlike any other heat transfer application, there is a strict limit on the electrical conductivity of the nanofluids due to their electrically active environment. Therefore, there is a possible current leakage to the coolant due to the nanofluids’ conductive behavior. In this study, heat transfer performance and current drop of 0.5% Al2O3 and 0.5% SiO2 water were investigated. The nanofluids were forced to flow in a charged channel subjected to a heater pad of 60°C to 70°C to mimic the operating condition of a PEMFC. The performance of each nanofluid was observed and compared to distilled water. The channel temperature was reduced by 43.3 % and 42.7 % by Al2O3 and SiO2 nanofluids, respectively, compared to base fluids at Re 700. In terms of current drop, SiO2 nanofluids have the highest current drop with 2.33 % from the initial current value. It was further justified with the increment in electrical conductivity value of the fluids after the experiment, thus justifying the current leakage hypothesis.

  • Abdolbaqi, M. K., Azmi, W. H., Mamat, R., Sharma, K. V., & Najafi, G. (2016). Experimental investigation of thermal conductivity and electrical conductivity of BioGlycol-water mixture based Al2O3 nanofluid. Applied Thermal Engineering, 102, 932-941. https://doi.org/10.1016/j.applthermaleng.2016.03.074

  • Aghayari, R., Maddah, H., Zarei, M., Dehghani, M., & Mahalle, S. G. K. (2014). Heat transfer of nanofluid in a double pipe heat exchanger. International Scholarly Research Notices, 2014, 1-7. https://doi.org/10.1155/2014/736424

  • Asirvatham, L. G., Vishal, N., Gangatharan, S. K., & Lal, D. M. (2009). Experimental study on forced convective heat transfer with low volume fraction of CuO/Water nanofluid. Energies, 2(1), 97-119. https://doi.org/10.3390/en20100097

  • Barbir, F. (2005). PEM fuel cells: Theory and practice. Elsevier.

  • Ballard. (2010). FCgen ® -1310 fuel cell stack - Design characteristics. Ballard Power System Inc.

  • Beckwith, T. G., Marangoni, R. D., & Lienhard, J. H. (2007). Assessing and presenting experimental data. Mechanical Measurements, 5, 45-73.

  • Cengel, Y. A., & Afshin, J. G. (2020). Heat and mass transfer: Fundamentals and applications (5th Ed.). McGraw-Hill Education.

  • Cengel, Y. A., & Cimbala, J. (2006). Fluid mechanics: Fundamentals and application. McGraw-Hill Higher Education.

  • Chereches, E. I., & Minea, A. A. (2019). Electrical conductivity of new nanoparticle enhanced fluids: An experimental study. Nanomaterials, 9(9), 1-15. https://doi.org/10.3390/nano9091228

  • Coleman, H. W., & Steele, W. G. (1995). Engineering application of experimental uncertainty analysis. AIAA Journal, 33(10), 1888-1896. https://doi.org/10.2514/3.12742

  • Ù‘Hermans, T., Nguyen, F., Robert, T., & Revil, A. (2014). Geophysical methods for monitoring temperature changes in shallow low enthalpy geothermal systems. Energies, 7(8), 5083-5118. https://doi.org/10.3390/en7085083

  • Islam, R. (2016). Using nanofluids for proton exchange membrane fuel cell (PEMFC) cooling in automotive applications (Doctoral dissertation). RMIT University, Australia.

  • Jama, M., Singh, T., Gamaleldin, S. M., Koc, M., Samara, A., Isaifan, R. J., & Atieh, M. A. (2016). Critical review on nanofluids: Preparation, characterization, and applications. Journal of Nanomaterials, 2016, Article 6717624. https://doi.org/10.1155/2016/6717624

  • Khalid, S., Zakaria, I. A., Mohamed, W. A. N. W., & Hamzah, W. A. W. (2019). Comparative analysis of thermophysical properties of Al2O3 and SiO2 nanofluids. Journal of Mechanical Engineering, 8(Specialissue1), 153-163.

  • Khalid, S., Zakaria, I., Azmi, W. H., & Mohamed, W. A. N. W. (2020). Thermal–electrical–hydraulic properties of Al2O3–SiO2 hybrid nanofluids for advanced PEM fuel cell thermal management. Journal of Thermal Analysis and Calorimetry, 143(2), 1555-1567. https://doi.org/10.1007/s10973-020-09695-8

  • Larminie, J., & Dicks, A. (2013). Fuel cell systems explained (2nd Ed.). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118878330

  • Muhammad, N. M. A., & Sidik, N. A. C. (2018). Applications of nanofluids and various minichannel configurations for heat transfer improvement: A review of numerical study. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 46(1), 49-61.

  • Muhammad, N. M., Sidik, N. A. C., Saat, A., & Abdullahi, B. (2019). Effect of nanofluids on heat transfer and pressure drop characteristics of diverging-converging minichannel heat sink. CFD Letters, 11(4), 105-120.

  • Pourfayaz, F., Sanjarian, N., Kasaeian, A., Astaraei, F. R., Sameti, M., & Nasirivatan, S. (2018). An experimental comparison of SiO2/water nanofluid heat transfer in square and circular cross-sectional channels. Journal of Thermal Analysis and Calorimetry, 131(2), 1577-1586. https://doi.org/10.1007/s10973-017-6500-4

  • Sahin, B., Manay, E., & Akyurek, E. F. (2015). An experimental study on heat transfer and pressure drop of CuO-water nanofluid. Journal of Nanomaterials, 16(1), Article 336. https://doi.org/10.1155/2015/790839

  • Taner, T. (2018). Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy, 143, 284-294. https://doi.org/10.1016/j.energy.2017.10.102

  • Usri, N. A., Azmi, W. H., Mamat, R., Hamid, K. A., & Najafi, G. (2015). Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture. Energy Procedia, 79, 397-402. https://doi.org/10.1016/j.egypro.2015.11.509

  • Xuan, Y., & Li, Q. (2003). Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125(1), 151-155. https://doi.org/10.1115/1.1532008

  • Zakaria, I. A., Mohamed, W. A. N. W., Mamat, A. M. I., Sainan, K. I., Nawi, M. R. M., & Najafi, G. H. (2018). Numerical analysis of Al2O3 nanofluids in serpentine cooling plate of PEM fuel cell. Journal of Mechanical Engineering, 5(Specialissue1), 1-13.

  • Zakaria, I. A., Mohamed, W. A. N. W., Zailan, M. B., & Azmi, W. H. (2019). Experimental analysis of SiO2-distilled water nanofluids in a polymer electrolyte membrane fuel cell parallel channel cooling plate. International Journal of Hydrogen Energy, 44(47), 25850-25862. https://doi.org/10.1016/j.ijhydene.2019.07.255

  • Zakaria, I., Azmi, W. H., Mamat, A. M. I., Mamat, R., Saidur, R., Talib, S. F. A., & Mohamed, W. A. N. W. (2016). Thermal analysis of Al2O3-water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: An experimental study. International Journal of Hydrogen Energy, 41(9), 5096-5112. https://doi.org/10.1016/j.ijhydene.2016.01.041

  • Zakaria, I., Azmi, W. H., Mohamed, W. A. N. W., Mamat, R., & Najafi, G. (2015a). Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water - Ethylene glycol mixture for proton exchange membrane fuel cell application. International Communications in Heat and Mass Transfer, 61, 61-68. https://doi.org/10.1016/j.icheatmasstransfer.2014.12.015

  • Zakaria, I., Mohamed, W. A. N. W., & Azmi, W. H. (2015b). Thermal analysis on heat transfer enhancement and fluid flow for Al2O3 water-ethylene glycol nanofluid in single PEMFC mini channel. International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 9(9), 1661-1666.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST-2788-2021

Download Full Article PDF

Share this article

Recent Articles