e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Andrić, L., Terzić, A., Aćimović-Pavlović, Z., Trumić, M., Petrov, M., & Pavlović, L. (2013). A kinetic study of micronization grinding of dry mica in a planetary ball mill. Advances in Materials Science and Engineering, 2013, 1-6. https://doi.org/10.1155/2013/543857
Abd, A. A. (2016). Study the effect of mica as filler in natural rubber properties. Journal of University of Babylon, 24(3), 773-781.
Ajaka, E. O., & Akinbinu, V. A. (2011). Design, fabrication and performance analysis of a planetary roll mill for grinding effect. ARPN Journal of Engineering and Applied Sciences, 4(6), 75-90.
Anderson, J., Shori, S., Jabbari, E., Ploehn, H. J., Gadala-Maria, F., & Priftis, D. (2020). Correlating coating quality of coverage with rheology for mica-based paints. Applied Rheology, 30(1), 119-129. https://doi.org/10.1515/arh-2020-0110
Arbain, R., Othman, M., & Palaniandy, S. (2011). Preparation of iron oxide nanoparticles by mechanical milling. Minerals Engineering, 24(1), 1-9. https://doi.org/10.1016/j.mineng.2010.08.025
Ashrafizadeh, H., & Ashrafizaadeh, M. (2012). Influence of processing parameters on grinding mechanism in planetary mill by employing discrete element method. Advanced Powder Technology, 23(6), 708-716. https://doi.org/10.1016/j.apt.2011.09.002
Atanov, S. K., Bigalieva, A. F. Z., Apachidy, N. K., & Rusak, A. V. (2020). Process control issues of fine grinding in a planetary mill. Applied Mathematics Computer Science Control Processes, 16(3), 277-292. https://doi.org/10.21638/11701/spbu10.2020.306
Barlow, S. G., & Manning, D. A. C. (1999). Influence of time and temperature on reactions and transformations of muscovite mica. British Ceramic Transactions, 98(3), 122-126. https://doi.org/10.1179/096797899680327
Burmeister, C., Titscher, L., Breitung-Faes, S., & Kwade, A. (2018). Dry grinding in planetary ball mills: Evaluation of a stressing model. Advanced Powder Technology, 29(1), 191-201. https://doi.org/10.1016/j.apt.2017.11.001
Cheng, K., Wan, J., & Liang, K. (1999). Enhanced mechanical properties of oriented mica glass-ceramics. Materials Letters, 39(6), 350-353. https://doi.org/10.1016/S0167-577X(99)00033-6
Cho, H., Lee, H., & Lee, Y. (2006). Some breakage characteristics of ultra-fine wet grinding with a centrifugal mill. International Journal of Mineral Processing, 78(4), 250-261. https://doi.org/10.1016/j.minpro.2005.11.005
El-Mofty, S. E., Abuhasel, K. A., Elbendari, A. M., & El-Midany, A. A. (2020). Ultrafine dry grinding of talc by planetary mill: Effects of operating conditions. Obogashchenie Rud, 6(4), 21-25. https://doi.org/10.17580/or.2020.06.04
Feng, Y. T., Han, K., & Owen, D. R. J. (2004). Discrete element simulation of the dynamics of high energy planetary ball milling processes. Materials Science and Engineering: A, 375, 815-819. https://doi.org/10.1016/j.msea.2003.10.162
Guzzo, P. L., Santos, J. B., & David, R. C. (2014). Particle size distribution and structural changes in limestone ground in planetary ball mill. International Journal of Mineral Processing, 126, 41-48. https://doi.org/10.1016/j.minpro.2013.11.005
Hirosawa, F., Iwasaki, T., & Iwata, M. (2021). Particle impact energy variation with the size and number of particles in a planetary ball mill. In MATEC Web of Conferences (Vol. 333, pp. 1-6). EDP Sciences. https://doi.org/10.1051/matecconf/202133302016
Lee, J. R., Lee, K. S., Park, Y. O., & Lee, K. Y. (2020). Fluidization characteristics of fine cohesive particles assisted by vertical vibration in a fluidized bed reactor. Chemical Engineering Journal, 380, Article 122454. https://doi.org/10.1016/j.cej.2019.122454
Li, J., & Hitch, M. (2017). Ultra-fine grinding and mechanical activation of mine waste rock using a planetary mill for mineral carbonation. International Journal of Mineral Processing, 158, 18-26. https://doi.org/10.1016/j.minpro.2016.11.016
Liu, S., Li, Q., Xie, G., Li, L., & Xiao, H. (2016). Effect of grinding time on the particle characteristics of glass powder. Powder Technology, 295, 133-141. https://doi.org/10.1016/j.powtec.2016.03.030
Paine, K. A. (2019). Physicochemical and mechanical properties of portland cements. In P. C. Hewlett & M. Liska (Eds.), Lea’s Chemistry of Cement and Concrete (pp. 285-339). Elsevier. https://doi.org/10.1016/B978-0-08-100773-0.00007-1
Palaniandy, S., & Jamil, N. H. (2009). Influence of milling conditions on the mechanochemical synthesis of CaTiO3 nanoparticles. Journal of Alloys and Compounds, 476(1-2), 894-902. https://doi.org/10.1016/j.jallcom.2008.09.133
Pérez-Maqueda, L. A., Blanes, J. M., Pascual, J., & Pérez-Rodríguez, J. L. (2004). The influence of sonication on the thermal behavior of muscovite and biotite. Journal of the European Ceramic Society, 24(9), 2793-2801. https://doi.org/10.1016/j.jeurceramsoc.2003.10.002
Pribytkov, G. A., Baranovskiy, A. V., Korosteleva, E. N., Krinitcyn, M. G., & Korzhova, V. V. (2019). A production of fine ferrotitanium powder by intensive planetary mill grinding. In Materials Today: Proceedings (pp. 461-463). Elsevier. https://doi.org/10.1016/j.matpr.2019.12.177
Real, C., & Gotor, F. J. (2019). Effects of the speed ratio on the efficiency of planetary mills. Heliyon, 5(2), Article e01227. https://doi.org/10.1016/j.heliyon.2019.e01227
Roshanaei, H., Khodkar, F., & Alimardani, M. (2020). Contribution of filler-filler interaction and filler aspect ratio in rubber reinforcement by silica and mica. Iranian Polymer Journal, 29(10), 901-909. https://doi.org/10.1007/s13726-020-00850-4
Sato, A., Kano, J., & Saito, F. (2010). Analysis of abrasion mechanism of grinding media in a planetary mill with DEM simulation. Advanced Powder Technology, 21(2), 212-216. https://doi.org/10.1016/j.apt.2010.01.005
Usman, H. (2015). Measuring the efficiency of the tumbling mill as a function of lifter configurations and operating parameters (Doctoral dissertation). Colorado University, USA. https://mountainscholar.org/bitstream/ handle/11124/17125/Usman_mines_0052E_10720.pdf
Zhao, S., Wang, G., Yang, H., Chen, G., & Qiu X. (2021). Agglomeration-aggregation and leaching properties of mechanically activated chalcopyrite. Transactions of Nonferrous Metals Society of China, 31(5), 1465-1474. https://doi.org/10.1016/S1003-6326(21)65590-5
ISSN 1511-3701
e-ISSN 2231-8542