Home / Regular Issue / JTAS Vol. 31 (3) Apr. 2023 / JST-3570-2022

 

Highly Conductive Graphenated-Carbon Nanotubes Sheet with Graphene Foliates for Counter Electrode Application in Dye-Sensitized Solar Cells

Yusnita Yusuf, Suhaidi Shafie, Ismayadi Ismail, Fauzan Ahmad, Mohd Nizar Hamidon, Pandey Shyam Sudhir and Lei Wei

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 3, April 2023

DOI: https://doi.org/10.47836/pjst.31.3.12

Keywords: Carbon-based counter electrode, DSSC, g-CNT sheet

Published on: 7 April 2023

This work enlightened the synthesis of graphenated-carbon nanotubes sheet (g-CNT) using the floating-catalyst chemical vapor deposition method (FCCVD) for dye-sensitized solar cell (DSSC) application. The carbon injection flow rate in the experiment was varied to 6, 8, and 10 ml/h. The morphological findings revealed that the g-CNT formed a highly conductive network. Excellent conductivity was obtained for the sample g-CNT8 (34.5 S/cm) compared to the sample g-CNT6 (11.2S/cm) and CNT10 (4.76 S/cm). This excellent feature is due to the hybrid structure of the g-CNT8, which creates efficient electron transfer in the materials resulting in higher conductivity. The hybrid structure provides a high surface area that improves conductivity. Therefore, the g-CNT sheet is an excellent candidate to replace the conventional platinum used as a counter electrode (CE) in DSSC.

  • Abdullah, H. B., Irmawati, R., Ismail, I., Zaidi, M. A., & Abdullah, A. A. A. (2021). Synthesis and morphological study of graphenated carbon nanotube aerogel from grapeseed oil. Journal of Nanoparticle Research, 23(11), Article 244. https://doi.org/10.1007/s11051-021-05363-6

  • Adnan, N. L., Ismail, I., & Hashim, M. (2015). Effect of ferrocene concentration on the carbon nanotube cotton synthesized via floating catalyst CVD method. Australian Journal of Basic and Applied Sciences, 9(12), 109-113.

  • Andualem, A., & Demiss, S. (2018). Review on dye-sensitized solar cells (DSSCs). Edelweiss Applied Science and Technology, 2(1), 145-150. https://doi.org/10.33805/2639-6734.103

  • Biswas, R. K., Nemala, S. S., & Mallick, S. (2019). Platinum and transparent conducting oxide free graphene-CNT composite based counter-electrodes for dye-sensitized solar cells. Surface Engineering and Applied Electrochemistry, 55(4), 472-480. https://doi.org/10.3103/S1068375519040021

  • Chang, L. H., Hsieh, C. K., Hsiao, M. C., Chiang, J. C., Liu, P. I., & Ho, K. K. (2013). A graphene-multi-walled carbon nanotube hybrid supported on fluorinated tin oxide as a counter electrode of dye-sensitized solar cells. Journal of Power Sources, 222, 518-525. https://doi.org/10.1016/j.jpowsour.2012.08.058

  • Collins, P. G., Zettl, A., Bando, H., Thess, A., & Smalley, R. E. (1997). Nanotube nanodevice. Science, 278(5335), 100-103. https://doi.org/10.1126/science.278.5335.100

  • Devadiga, D., Selvakumar, M., Shetty, P., & Santosh, M. S. (2021). Dye-sensitized solar cell for indoor applications: A mini-review. Journal of Electronic Materials, 50(6), 3187-3206. https://doi.org/10.1007/s11664-021-08854-3

  • Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L., & Pettersson, H. (2010). Dye-sensitized solar cells. Chemical Reviews, 110(11), 6595-6663. https://doi.org/10.1021/cr900356p

  • Ibrahim, N. I., Ismail, I., Mamat, S. M., & Adnan, N. L. (2019). Effect of carbon source injection rate on CNT film via floating catalyst CVD method. Solid State Phenomena, 290, 113-121. https://doi.org/10.4028/www.scientific.net/ssp.290.113

  • Ismail, I., Yusof, J. M., Nong, M. A. M., & Adnan, N. L. (2018). Synthesis of carbon nanotube-cotton superfiber materials. In Synthesis, Technology and Applications of Carbon Nanomaterials (pp. 61-76). Elsevier. https://doi.org/10.1016/b978-0-12-815757-2.00003-6

  • Ismail, I., Mamat, S., Adnan, N. L., Yunusa, Z., & Hasan, I. H. (2019). Novel 3-dimensional cotton-like graphenated-carbon nanotubes synthesized via floating catalyst chemical vapour deposition method for potential gas-sensing applications. Journals of Nanomaterials, 2019, 1-10. https://doi.org/10.1155/2019/5717180

  • Lokman, M. Q., Shaban, S., Shafie, S., Ahmad, F., Yahaya, H., Mohd Rosnan, R., & Ibrahim, M. A. (2021). Improving Ag-TiO2 nanocomposites’ current density by TiCl4 pretreated on FTO glass for dye-sensitised solar cells. Micro & Nano Letters, 16(7), 381-386. https://doi.org/10.1049/mna2.12061

  • Muhammad, N. Y., Mohtar, M. N., Ramli, M. M., Shafie, S., Shaban, S., & Yusuf, Y. (2020). Enhancement of dye sensitized solar cell by adsorption of graphene quantum dots. International Journal of Materials, Mechanics and Manufacturing, 8(3), 126-130. https://doi.org/10.18178/ijmmm.2020.8.3.494

  • Ni, Z. H., Fan, H. M., Feng, Y. P., Shen, Z. X., Yang, B. J., & Wu, Y. H. (2006). Raman spectroscopic investigation of carbon nanowalls. The Journal of Chemical Physics, 124(20), Article 204703. https://doi:10.1063/1.2200353

  • Olsen, E., Hagen, G., & Lindquist, S. E. (2000). Dissolution of platinum in methoxy propionitrile containing LiI/I2. Solar Energy Materials and Solar Cells, 63(3), 267-273. https://doi.org/10.1016/S0927-0248(00)00033-7

  • Parker, C. B., Raut, A. S., Brown, B., Stoner, B. R., & Glass, J. T. (2012). Three-dimensional arrays of graphenated carbon nanotubes. Journal of Materials Research, 27(7), 1046-1053. https://doi.org/10.1557/jmr.2012.43

  • Samantaray, M. R., Mondal, A. K., Murugadoss, G., Pitchaimuthu, S., Das, S., Bahru, R., & Mohamed, M. A. (2020). Synergetic effects of hybrid carbon nanostructured counter electrodes for dye-sensitized solar cells : A review. Materials, 13(12), Article 2779. https://doi.org/10.3390/ma13122779

  • Sharif, N. F. M., Kadir, M. Z. A. A., Shafie, S., Din, M. F., Yusuf, Y., & Samaila, B. (2022). Light absorption enhancement using graphene quantum dots and the effect of N-719 dye loading on the photoelectrode of dye-sensitized solar cell (DSSC). Key Engineering Materials, 908, 259-264. https://doi.org/10.4028/p-0cm1r4

  • Wahyuono, R. A., Jia, G., Plentz, J., Dellith, A., Dellith, J., Herrmann-Westendorf, F., Dietzek, B. (2019). Self-assembled graphene/MWCNT bilayers as platinum-free counter electrode in dye-sensitized solar cells. ChemPhysChem, 20(24), 3336-3345. https://doi.org/10.1002/cphc.201900714

  • Wan, N., Sun, L. T., Ding, S. N., Xu, T., Hu, X. H., Sun, J., & Bi, H. C. (2013). Synthesis of graphene-CNT hybrids via joule heating: Structural characterization and electrical transport. Carbon, 53, 260-268. https://doi.org/10.1016/j.carbon.2012.10.057

  • Wepasnick, K. A., Smith, B. A., Bitter, J. L., & Fairbrother, D. H. (2010). Chemical and structural characterization of carbon nanotube surfaces. Analytical and Bioanalytical Chemistry, 396(3), 1003-1014. https://doi.org/10.1007/s00216-009-3332-5

  • Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., Wei, Y. (2017). Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews, 46(19), 5975-6023. https://doi.org/10.1039/c6cs00752j

  • Yella, A., Lee, H. W., Tsao, H. N., Yi, C., Chandiran, A. K., Nazeeruddin, M. K., Grätzel, M. (2011). Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. Science, 334, 629-633. https://doi.org/10.1126/science.1209688

  • Yu, F., Shi, Y., Yao, W., Han, S., & Ma, J. (2019). A new breakthrough for graphene/carbon nanotubes as counter electrodes of dye-sensitized solar cells with up to a 10.69% power conversion efficiency. Journal of Power Sources, 412, 366-373. https://doi.org/10.1016/j.jpowsour.2018.11.066

  • Yusuf, Y., Shafie, S., Ismail, I., Ahmad, F., Hamidon, M. N., Pandey, S. S., Lei, W. (2021). A comparative study of graphenated-carbon nanotubes cotton and carbon nanotubes as catalyst for counter electrode in dye-sensitized solar cells. Malaysian Journal of Microscopy, 17(2), 162-174. https://malaysianjournalofmicroscopy.org/ojs/index.php/mjm/article/view/543

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST-3570-2022

Download Full Article PDF

Share this article

Related Articles