PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Anbuchezian, R., Ravichandran, S., Karthick Rajan, D., Tilivi, S., & Prabha Devi, S. (2018). Identification and functional characterization of antimicrobial peptide from the marine crab Dromia dehaani. Microbial Pathogenesis, 125, 60–65. https://doi.org/https://doi.org/10.10 16 /j.micpath.2018.08.056

  • Baiden, N., Gandini, C., Goddard, P., & Sayanova, O. (2023). Heterologous expression of antimicrobial peptides S-thanatin and bovine lactoferricin in the marine diatom Phaeodactylum tricornutum enhances native antimicrobial activity against Gram-negative bacteria. Algal Research, 69, Article 102927. https://doi.org/10.1016/j.algal.2022.102927

  • Batoni, G., Maisetta, G., & Esin, S. (2016). Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1858(5), 1044-1060. https://doi.org/10.1016/j.bbamem.2015.10.013

  • Bo, J., Yang, Y., Zheng, R., Fang, C., Jiang, Y., Liu, J., Chen, M., Hong, F., Bailey C. Segner, H., & Wang, K. (2019). Antimicrobial activity and mechanisms of multiple antimicrobial peptides isolated from rockfish Sebastiscus marmoratus. Fish & Shellfish Immunology, 93,1007-1017. https://doi.org/10.1016/j.fsi.2019.08.054

  • Buonocore, F., Picchietti, S., Porcelli, F., Della Pelle, G., Olivieri, C., Poerio, E., Bugli, F., Menchinelli, G., Sanguinetti, M., Bresciani, A., Gennari, N., Taddei, A. R., Fausto, A. M., & Scapigliati, G. (2019). Fish-derived antimicrobial peptides: Activity of a chionodracine mutant against bacterial models and human bacterial pathogens. Developmental & Comparative Immunology, 96, 9–17. https://doi.org/10.1016/j.dci.2019.02.012

  • Büyükkiraz, M. E., & Kesmen, Z. (2022). Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds. Journal of Applied Microbiology, 132(3), 1573-1596.https://doi.org/10.1111/jam.15314

  • Cen, X., Liu, B., Zhang, G., Liu, H., Yao, G., He, M., & Liu, W. (2023). Antimicrobial peptide in giant Triton snail Charonia tritonis: mRNA profiles for tissues and its potential antibacterial activity. Fish & Shellfish Immunology, 136, Article 108734. https://doi.org/https://doi.org/ 10.1016/ j.fsi.2023.108734

  • Chang, S. M., Matchar, D. B., Smetana, G. W., & Umscheid, C. A. (Eds.). (2012). Methods guide for medical test reviews. Agency for Healthcare Research and Quality.

  • Chee, P. Y., Mang, M., Lau, E. S., Tan, L. T. H., He, Y. W., Lee, W. L., Pusparajah, P., Chan, K., Lee, L., & Goh, B. H. (2019). Epinecidin-1, an antimicrobial peptide derived from grouper (Epinephelus coioides): Pharmacological activities and applications. Frontiers in microbiology, 10, Article 2631. https://doi.org/10.3389%2Ffmicb.2019.02631

  • Chen, B., Fan, D. Q., Zhu, K. X., Shan, Z. G., Chen, F. Y., Hou, L., Cai, L., & Wang, K. J. (2015). Mechanism study on a new antimicrobial peptide Sphistin derived from the N-terminus of crab histone H2A identified in haemolymphs of Scylla paramamosain. Fish & Shellfish Immunology, 47(2), 833–846. https://doi.org/10.1016/j.fsi.2015.10.010.

  • Cipolari, O. C., de Oliveira Neto, X. A., & Conceição, K. (2020). Fish bioactive peptides: A systematic review focused on sting and skin. Aquaculture, 515, Article 734598. https://doi.org/10.1016/j.aquaculture.2019.734598

  • Destoumieux-Garzón, D., Rosa, R. D., Schmitt, P., Barreto, C., Vidal-Dupiol, J., Mitta, G., Gueguen, Y., & Bachere, E. (2016). Antimicrobial peptides in marine invertebrate health and disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1695), Article 20150300. https://doi.org/10.1098%2Frstb.2015.0300

  • Falanga, A., Lombardi, L., Franci, G., Vitiello, M., Iovene, M. R., Morelli, G., Galdiero, M., & Galdiero, S. (2016). Marine antimicrobial peptides: Nature provides templates for the design of novel compounds against pathogenic bacteria. International Journal of Molecular Sciences, 17(5), Article 785. https://doi.org/10.3390/ijms17050785

  • Ganz, T. (2002). Antimicrobial polypeptides in host defense of the respiratory tract. The Journal of Clinical Investigation, 109(6), 693-697. https://doi.org/10.1172/JCI15218

  • García-Beltrán, J. M., Arizcun, M., & Chaves-Pozo, E. (2023). Antimicrobial peptides from photosynthetic marine organisms with potential application in aquaculture. Marine Drugs, 21(5), Article 290. https://doi.org/10.3390/md2 21(5), 290. 1050290

  • Gayathri, K. V., Aishwarya, S., Kumar, P. S., Rajendran, U. R., & Gunasekaran, K. (2021). Metabolic and molecular modelling of zebrafish gut biome to unravel antimicrobial peptides through metagenomics. Microbial Pathogenesis, 154, Article 104862. https://doi.org/10.1016/j.micpath.2021.104862

  • Giuliani, A., Pirri, G., & Nicoletto, S. (2007). Antimicrobial peptides: An overview of a promising class of therapeutics. Central European Journal of Biology, 2(1), 1-33. https://doi.org/10.2478/s11535-007-0010-5

  • Hafeez, A. B., Jiang, X., Bergen, P. J., & Zhu, Y. (2021). Antimicrobial peptides: An update on classifications and databases. International Journal of Molecular Sciences, 22(21), Article 11691. https://doi.org/10.3390/ijms222111691

  • Hallock, K. J., Lee, D. K., & Ramamoorthy, A. (2003). MSI-78, an analogue of the magainin antimicrobial peptides, disrupts lipid bilayer structure via positive curvature strain. Biophysical Journal, 84(5), 3052-3060. https://doi.org/10.1016/S0006-3495(03)70031-9

  • Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Frontiers in Microbiology, 11, Article 2259. https://doi.org/10.3389/fmicb.2020.582779

  • Jenssen, H., Hamill, P., & Hancock, R. E. (2006). Peptide antimicrobial agents. Clinical Microbiology Reviews, 19(3), 491-511. https://doi.org/10.1128%2FCMR.00056-05

  • Kang, H. K., Seo, C. H., & Park, Y. (2015). Marine peptides and their anti-infective activities. Marine Drugs, 13(1), 618-654. https://doi.org/10.3390/md13010618

  • Law, D., Najm, A. A., Chong, J. X., K’ng, J. Z., Amran, M., Ching, H. L., Wong, R. R., Leong, M. H., Mahdi, I. M., & Fazry, S. (2023). In silico identification and in vitro assessment of a potential anti-breast cancer activity of antimicrobial peptide retrieved from the ATMP1 anabas testudineus fish peptide. PeerJ, 11, Article e15651. https://doi.org/10.7717/peerj.15651

  • Lazzaro, B. P., Zasloff, M., & Rolff, J. (2020). Antimicrobial peptides: Application informed by evolution. Science, 368(6490), Article eaau5480. https://doi.org/10.1126/science.aau5480

  • Lei, J., Sun, L., Huang, S., Zhu, C., Li, P., He, J., Mackey, V., Coy, D. H., & He, Q. (2019). The antimicrobial peptides and their potential clinical applications. American Journal of Translational Research, 11(7), Article 3919

  • Lipsky, B. A., Holroyd, K. J., & Zasloff, M. (2008). Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: A randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clinical Infectious Diseases. 47(12), 1537-1545. https://doi.org/10.1086/593186.

  • Luo, Y., & Song, Y. (2021). Mechanism of antimicrobial peptides: Antimicrobial, anti-inflammatory and antibiofilm activities. International Journal of Molecular Sciences, 22(21), Article 11404. https://doi.org/10.3390/ijms222111401

  • Ma, H., Yang, L., Tian, Z., Zhu, L., Peng, J., Fu, P., Xiu, J., & Guo, G. (2023). Antimicrobial peptide AMP-17 exerts anti–Candida albicans effects through ROS-mediated apoptosis and necrosis. International Microbiology, 26(1), 81-90. https://doi.org/10.1007/s10123-022-00274-5.

  • Mahlapuu, M., Håkansson, J., Ringstad, L., & Björn, C. (2016). Antimicrobial peptides: An emerging category of therapeutic agents. Frontiers in Cellular and Infection Microbiology, 6, Article 235805. https://doi.org/10.3389/fcimb.2016.00194

  • Mba, I. E., & Nweze, E. I. (2022). Antimicrobial peptides therapy: An emerging alternative for treating drug-resistant bacteria. The Yale Journal of Biology and Medicine, 95(4), 445–463.

  • Méndez-Samperio, P. (2013). Recent advances in the field of antimicrobial peptides in inflammatory diseases. Advanced Biomedical Research, 2(1), Article 50. https://doi.org/10.4103/2277-9175.114192

  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 339, Article b2535. https://doi.org/10.1136/bmj.b2535

  • Moretta, A., Scieuzo, C., Petrone, A. M., Salvia, R., Manniello, M. D., Franco, A., Lucchetti, D., Vassallo, A., Vogel, H., Sgambato, A., & Falabella, P. (2021). Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Frontiers in Cellular and Infection Microbiology, 11, Article 668632. https://doi.org/10.3389/fcimb.2021.668632

  • Munn, Z., Moola, S., Lisy, K., Riitano, D., & Tufanaru, C. (2015). Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. International Journal of Evidence-based Healthcare, 13(3), 147–153. https://doi.org/10.1097/xeb.0000000000000054

  • Najm, A. A. K., Azfaralariff, A., Dyari, H. R. E., Othman, B. A., Shahid, M., Khalili, N., Law, D., Alwi, S. S. S., & Fazry, S. (2021). Anti-breast cancer synthetic peptides derived from the Anabas testudineus skin mucus fractions. Scientific Reports, 11(1), Article 23182. https://doi.org/10.1038/s41598-021-02007-6

  • Narula, P., Kiruthika, S., Chowdhari, S., Vivekanandan, P., & Chugh, A. (2023). Inhibition of hepatitis B virus (HBV) by Tachyplesin, a marine antimicrobial cell-penetrating peptide. Pharmaceutics, 15(2), Article 672. https://doi.org/10.3390/pharmaceutics15020672

  • Nyberg, F., Carlsson, A., & Hallberg, M. (2013). Casomorphins/Hemorphins. In A. J. Kastin (Ed.) Handbook of Biologically Active Peptides (pp. 1550–1555). Academi Press. https://doi.org/10.1016/b978-0-12-385095-9.00211-6

  • Oh, H. Y., Go, H. J., & Park, N. G. (2020). Identification and characterization of SaRpAMP, a 60S ribosomal protein L27-derived antimicrobial peptide from amur catfish, Silurus asotus. Fish & Shellfish Immunology, 106, 480–490. https://doi.org/https://doi.org/10.1016 /j.fsi.2020.06.038

  • Okella, H., Ikiriza, H., Ochwo, S., Ajayi, C. O., Ndekezi, C., Nkamwesiga, J., Kaggwa, B., Aber, J., Mtewa, A. G., Koffi, T. K., Odongo, S., Vertommen, D., Kato, C. D., & Ogwang, P. E. (2021). Identification of antimicrobial peptides isolated from the skin mucus of African Catfish, Clarias gariepinus (Burchell, 1822). Frontiers in Microbiology, 12, Article 794631. https://doi.org/10.3389/fmicb.2021.794631

  • Pelle, G. D., Perà, G., Belardinelli, M. C., Gerdol, M., Felli, M., Crognale, S., Scapigliati, G., Ceccacci, F., Buonocore, F., & Porcelli, F. (2020) Trematocine, a novel antimicrobial peptide from the antarctic fish Trematomus bernacchii: Identification and biological activity. Antibiotics, 9(2), Article 66. https://doi.org/10.3390/antibiotics9020066.

  • Peng, K. C., Lee, S. H., Hour, A. L., Pan, C. Y., Lee, L. H., & Chen, J. Y. (2012). Five different piscidins from Nile tilapia, Oreochromis Niloticus: Analysis of their expressions and biological functions. PLoSOne, 7(11), Article e50263. https://doi.org/10.1371/journal.pone.0050263

  • Raju, V. S., Sarkar, P., Pachaiappan, R., Paray, B. A., Al-Sadoon, M. K., & Arockiaraj, J. (2020). Defense involvement of piscidin from striped murrel Channa striatus and its peptides CsRG12 and CsLC11 involvement in an antimicrobial and antibiofilm activity. Fish & Shellfish Immunology, 99, 368-378. https://doi.org/10.1016/j.fsi.2020.02.027

  • Rima, M., Fajloun, Z., Sabatier, J. M., Bechinger, B., & Naas, T. (2021). Antimicrobial peptides: A potent alternative to antibiotics. Antibiotics, 10(9), Article 1095. https://doi.org/10.3390/antibiotics10091095

  • Rončević, T., Gerdol, M., Mardirossian, M., Maleš, M., Cvjetan, S., Benincasa, M., Maravić, A., Gajski, G., Krce, L., Aviani, I., Hrabar, J., Trumbić, Ž., Derks, M., Pallavicini, A., Weingarth, M., Zoranić, L., Tossi, A., & Mladineo, I. (2022). Anisaxins, helical antimicrobial peptides from marine parasites, kill resistant bacteria by lipid extraction and membrane disruption. Acta Biomaterialia, 146, 131–144. https://doi.org/https://doi.org/10.1016/j.actbio. 2022.04.025

  • Russell, C. K., & Gregory, D. M. (2003). Evaluation of qualitative research studies. Evidence-Based Nursing, 6(2), 36-40. https://doi.org/10.1136/ebn.6.2.36

  • Semreen, M. H., El-Gamal, M. I., Abdin, S., Alkhazraji, H., Kamal, L., Hammad, S., El-Awady, F., Waleed, D., & Kourbaj, L. (2018). Recent updates of marine antimicrobial peptides. Saudi Pharmaceutical Journal, 26(3), 396–409. https://doi.org/10.1016/j.jsps.2018.01.001

  • Sepulveda, J., & Wilson, M. (2019). The use and abuse of antibiotics. Institute for Global Health Sciences. https://globalhealthsciences.ucsf.edu/news/use-and-abuse-antibiotics

  • Subramaniam, G., Yew, X. Y., & Sivasamugham, L. A. (2020). Antibacterial activity of Cymbopogon citratus against clinically important bacteria. South African Journal of Chemical Engineering, 34, 26–30. https://doi.org/10.1016/j.sajce.2020.05.010

  • Tortorella, A., Leone, L., Lombardi, A., Pizzo, E., Bosso, A., Winter, R., Petraccone, L., Del Vecchio, P., & Oliva, R. (2023). The impact of N-glycosylation on the properties of the antimicrobial peptide LL-III. Scientific Reports, 13(1), Article 3733. https://doi.org/10.1038/s41598-023-29984-0

  • Uddin, T. M., Chakraborty, A. J., Khusro, A., Zidan, B. R., Mitra, S., Emran, T. B., Dhama, K., Ripon, Md. K., Gajdács, M., Sahibzada, M. U., Hossain, M. J., & Koirala, N. (2021). Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. Journal of Infection and Public Health, 14(12), 1750–1766. https://doi.org/10.1016/j.jiph.2021.10.020

  • Vitali, A. (2018). Antimicrobial peptides derived from marine sponges. American Journal of Clinical Microbiology and Antimicrobials, 1(1), Article 1006.

  • Waghu, F. H., & Idicula-Thomas, S. (2019). Collection of antimicrobial peptides database and its derivatives: Applications and beyond. Protein Science, 29(1), 36-42 https://doi.org/10.1002/pro.3714

  • Walsh, D., & Downe, S. (2006). Appraising the quality of qualitative research. Midwifery, 22(2), 108–119. https://doi.org/10.1016/j.midw.2005.05.004

  • Wang, S., Fan, L., Pan, H., Li, Y., Qiu, Y., & Lu, Y. (2023). Antimicrobial peptides from marine animals: Sources, structures, mechanisms and the potential for drug development. Frontiers in Marine Science, 9, Article 1112595. https://doi.org/10.3389/fmars.2022.1112595

  • Wei, O. Y., Xavier, R., & Marimuthu, K. (2010). Screening of antibacterial activity of mucus extract of snakehead fish, Channa striatus (Bloch). European Review for Medical and Pharmacological Sciences, 14(8), 675–681.

  • Wu, Y., Wang, H., & Chu, P. K. (2023). Enhancing macrophages to combat intracellular bacteria. The Innovation Life, 1(2), 100027-100028. https://doi.org/10.59717/j.xinn-life.2023.100027

  • Xuan, J., Feng, W., Wang, J., Wang, R., Zhang, B., Bo, L., Chen, Z. S., Yang, H., & Sun, L. (2023). Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resistance Updates, 68, Article 100954. https://doi.org/10.1016/j.drup.2023.100954

  • Ye, Z., Fu, L., Li, S., Chen, Z., Ouyang, J., Shang, X., Liu, Y., Gao, L., & Wang, Y. (2024). Synergistic collaboration between AMPs and non-direct antimicrobial cationic peptides. Nature Communications, 15(1), Article 7319. https://doi.org/10.1038/s41467-024-51730-x

  • Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415(6870), 389–395. https://doi.org/10.1038/415389a

  • Zheng, X., Yuan, C., Zhang, Y., Zha, S., Mao, F., & Bao, Y. (2022). Prediction and characterization of a novel hemoglobin-derived mutant peptide (mTgHbP7) from Tegillarca granosa. Fish & Shellfish Immunology, 125, 84-89. https://doi.org/10.1016/j.fsi.2022.05.007

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles