PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Açıkel, H. H., & Genç, M. S. (2018). Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface. Energy, 165, 176–190. https://doi.org/10.1016/j.energy.2018.09.040

    Ajaj, R. M., Flores, E. S., Friswell, M. I., Allegri, G., Woods, B. K. S., Isikveren, A. T., & Dettmer, W. G. (2013). The Zigzag wingbox for a span morphing wing. Aerospace Science and Technology, 28(1), 364–375. https://doi.org/10.1016/j.ast.2012.12.002

    Amini, Y., Emdad, H., & Farid, M. (2015). Adjoint shape optimization of airfoils with attached Gurney flap. Aerospace Science and Technology, 41, 216–228. https://doi.org/10.1016/j.ast.2014.12.023

    Andersen, G. R., Cowan, D. L., & Piatak, D. J. (2007, April 23-26). Aeroelastic modeling, analysis and testing of a morphing wing structure. [Paper presentation]. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Honolulu, Hawaii. https://doi.org/10.2514/6.2007-1734

    Auteri, F., Savino, A., Zanotti, A., Gibertini, G., Zagaglia, D., Bmegaptche Tekap, Y., & Braza, M. (2022). Experimental evaluation of the aerodynamic performance of a large-scale high-lift morphing wing. Aerospace Science and Technology, 124, Article 107515. https://doi.org/10.1016/j.ast.2022.107515

    Bai, J. B., Chen, D., Xiong, J. J., & Shenoi, R. A. (2017). A corrugated flexible composite skin for morphing applications. Composites Part B: Engineering, 131, 134–143. https://doi.org/10.1016/j.compositesb.2017.07.056

    Burdette, D. A., & Martins, J. R. R. A. (2019). Impact of morphing trailing edges on mission performance for the common research model. Journal of Aircraft, 56(1), 369–384. https://doi.org/10.2514/1.C034967

    Carneiro, P. M. C., & Gamboa, P. (2019). Structural analysis of wing ribs obtained by additive manufacturing. Rapid Prototyping Journal, 25(4), 708–720. https://doi.org/10.1108/RPJ-02-2018-0044

    Chang, L., Shen, X., Dai, Y., Wang, T., & Zhang, L. (2020). Investigation on the mechanical properties of topologically optimized cellular structures for sandwiched morphing skins. Composite Structures, 250, Article 112555. https://doi.org/10.1016/j.compstruct.2020.112555

    Cumming, S. B., Smith, M. S., Ali, A. N., Bui, T. T., Ellsworth, J. C., & Garcia, C. A. (2016). Aerodynamic flight-test results for the adaptive compliant trailing edge. AIAA Atmospheric Flight Mechanics Conference, 2016, Article 3855. https://doi.org/10.2514/6.2016-3855

    Dexl, F., Hauffe, A., & Wolf, K. (2022). Comparison of structural parameterization methods for the multidisciplinary optimization of active morphing wing sections. Computers and Structures, 263, Article 106743. https://doi.org/10.1016/j.compstruc.2022.106743

    Drela, M. (1989). XFOIL: An analysis and design system for low reynolds number airfoils. In T. J. Mueller (Ed.), Low Reynolds Number Aerodynamics (pp. 1-12). Springer. https://doi.org/https://doi.org/10.1007/978-3-642-84010-4_1

    Ferede, E., & Gandhi, F. (2020). Design, fabrication and testing of an active camber rotor blade tip. AIAA SciTech 2020, Article 1766. https://doi.org/10.2514/6.2020-1766

    Genç, M. S., Açıkel, H. H., & Koca, K. (2020). Effect of partial flexibility over both upper and lower surfaces to flow over wind turbine airfoil. Energy Conversion and Management, 219, Article 113042. https://doi.org/10.1016/j.enconman.2020.113042

    Genç, M. S., Kaynak, Ü., & Yapici, H. (2011). Performance of transition model for predicting low Re aerofoil flows without/with single and simultaneous blowing and suction. European Journal of Mechanics, B/Fluids, 30(2), 218–235. https://doi.org/10.1016/j.euromechflu.2010.11.001

    Guerrero, J. E. (2009). Effect of cambering on the aerodynamic performance of heaving airfoils. Journal of Bionic Engineering, 6(4), 398–407. https://doi.org/10.1016/S1672-6529(08)60134-1

    Hunsaker, D. F., Reid, J. T., & Joo, J. J. (2019). Geometric definition and ideal aerodynamic performance of parabolic trailing-edge flaps. International Journal of Astronautics and Aeronautical Engineering, 4(1), Article 199115235. https://doi.org/10.35840/2631-5009/7526

    Kan, Z., Li, D., Xiang, J., & Cheng, C. (2020). Delaying stall of morphing wing by periodic trailing-edge deflection. Chinese Journal of Aeronautics, 33(2), 493–500. https://doi.org/10.1016/j.cja.2019.09.028

    Karasu, I., Özden, M., & Genç, M. S. (2018). Performance assessment of transition models for three-dimensional flow over NACA4412 wings at low Reynolds numbers. Journal of Fluids Engineering, 140(12), Article 121102. https://doi.org/10.1115/1.4040228

    Kaul, U. K., & Nguyen, N. T. (2015, June 22-26). A 3-D computational study of a variable camber continuous trailing edge flap (VCCTEF) spanwise segment. [Paper presentation]. 33rd AIAA Applied Aerodynamics Conference, Dallas, Texas. https://doi.org/10.2514/6.2015-2422

    Koca, K., Genç, M. S., & Ertürk, S. (2022). Impact of local flexible membrane on power efficiency stability at wind turbine blade. Renewable Energy, 197, 1163–1173. https://doi.org/10.1016/j.renene.2022.08.038

    Liu, W., Li, H., & Zhang, J. (2017). Elastic properties of a cellular structure with in-plane corrugated cosine beams. Composite Structures, 180, 251–262. https://doi.org/10.1016/j.compstruct.2017.08.022

    Liu, W., Zhu, H., Zhou, S., Bai, Y., Wang, Y., & Zhao, C. (2013). In-plane corrugated cosine honeycomb for 1D morphing skin and its application on variable camber wing. Chinese Journal of Aeronautics, 26(4), 935–942. https://doi.org/10.1016/j.cja.2013.04.015

    Mohammadi, H., Ziaei-Rad, S., & Dayyani, I. (2015). An equivalent model for trapezoidal corrugated cores based on homogenization method. Composite Structures, 131, 160–170. https://doi.org/10.1016/j.compstruct.2015.04.048

    Morgado, J., Vizinho, R., Silvestre, M. A. R., & Páscoa, J. C. (2016). XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils. Aerospace Science and Technology, 52, 207–214. https://doi.org/10.1016/j.ast.2016.02.031

    Özkan, R., & Genç, M. S. (2023). Aerodynamic design and optimization of a small-scale wind turbine blade using a novel artificial bee colony algorithm based on blade element momentum (ABC-BEM) theory. Energy Conversion and Management, 283, Article 116937. https://doi.org/10.1016/j.enconman.2023.116937

    Pecora, R. (2021). Morphing wing flaps for large civil aircraft: Evolution of a smart technology across the Clean Sky program. Chinese Journal of Aeronautics, 34(7), 13–28. https://doi.org/10.1016/j.cja.2020.08.004

    Shen, Y., Chen, M., & Skelton, R. E. (2023). Markov data-based reference tracking control to tensegrity morphing airfoils. Engineering Structures, 291, Article 116430. https://doi.org/10.1016/j.engstruct.2023.116430

    Siddalingappa, P. K., Badardinni, R., Hosur, S., & Manvi, P. (2022). The effect of deflection angle on aerodynamic characteristics of morphing trailing edge airfoil at low speed. AIP Conference Proceedings, 2615(1), Article 030003. https://doi.org/10.1063/5.0116412

    Tsushima, N., Yokozeki, T., Su, W., & Arizono, H. (2019). Geometrically nonlinear static aeroelastic analysis of composite morphing wing with corrugated structures. Aerospace Science and Technology, 88, 244–257. https://doi.org/10.1016/j.ast.2019.03.025

    Woods, B. K. S., Parsons, L., Coles, A. B., Fincham, J. H. S., & Friswell, M. I. (2016). Morphing elastically lofted transition for active camber control surfaces. Aerospace Science and Technology, 55, 439–448. https://doi.org/10.1016/j.ast.2016.06.017

    Yang, Y., Wang, Z., & Lyu, S. (2021). Comparative study of two lay-up sequence dispositions for flexible skin design of morphing leading edge. Chinese Journal of Aeronautics, 34(7), 271–278. https://doi.org/10.1016/j.cja.2020.03.035

    Yu, A., Xi, F., Moosavian, A., & Li, B. (2018). Design of a sliding morphing skin with segmented rigid panels. Journal of Aircraft, 55(5), 1985–1994. https://doi.org/10.2514/1.C034711

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles