e-ISSN 2231-8542
ISSN 1511-3701
Joko Tandiono, Thamrin, Hapsoh and Trisla Warningsih
Pertanika Journal of Tropical Agricultural Science, Volume 48, Issue 2, February 2025
DOI: https://doi.org/10.47836/pjtas.48.2.18
Keywords: Boiler ash, CO2 emission, oil palm, peat
Published on: 2025-02-28
Peat soil has an important role in water and carbon storage. However, the utilization of peatland as an agricultural field requires drainage of water and the application of fertilizer or soil ameliorants to increase peat soil’s fertility; this will increase greenhouse gas emissions, particularly CO2, so the function of peat as a carbon sink turns into a source of greenhouse gas emissions. The research aims to determine the effect of using boiler ash as a soil ameliorant and nitrogen fertilizer on CO2 emission and FFB yield in oil palm plantations on peat soil. The treatment consisted of three levels of boiler ash (0-ton/ha/yr, 1.5-ton/ha/yr and 3-ton/ha/yr) and three levels of nitrogen fertilizer (0 kg N/palm/yr, 0.45 kg N/palm/yr and 0.9 kg/palm/yr). CO2 emission was measured using the closed chamber method. A PVC pipe with a length of 80 cm is the chamber. 60 cm of pipe was buried in the soil, and the other 20 cm was on the soil surface to catch CO2 released into the air. The application of a high rate of N fertilizer significantly increased CO2 emission from 0.56 g/m2/hour to 0.67 gr/m2/hour. Applying boiler ash at a low rate reduces CO2 emission from 0.63 g/m2/hour to 0.58 g/m2/hour. The application of boiler ash as a soil ameliorant not only has an impact on CO2 emissions but also improves peat soil chemical properties by significantly increasing soil pH, total phosphate, available phosphate, and exchangeable Calcium. The high boiler ash and low nitrogen fertilizer rates produce 29.13 t FFB/ha/yr with a CO2 emission of 0.63 g/m2/hour.
Astiani, D., Widiastuti, T., Ekamawanti, H. A., Ekyastuti, W., Roslinda, E., & Mujiman (2022). The partial contribution of CO2-emission losses from subsidence in small-holder oil palm plantation on a tropical peatland in West Kalimantan, Indonesia. Biodiversitas, 23(12), 6539–6545. https://doi.org/10.13057/biodiv/d231252
Arifin, I., Hanafi, M. M., Roslan, I., Ubaydah, M. U., Karim, Y. A., Tui, L. C., & Hamzah, S. (2022). Responses of irrigated oil palm to nitrogen, phosphorus and potassium fertilizers on clayey soil. Agricultural Water Management, 274, 107922. https://doi.org/10.1016/j.agwat.2022.107922
Babur, E., Uslu, Ö. S., Battaglia, M. L., Mumtaz, M. Z., Fahad, S., Diatta, A. A., Datta, R., & Ozlu, E. (2021). Nitrogen fertilizer effects on microbial respiration, microbial biomass, and carbon sequestration in a mediterranean grassland ecosystem. International Journal of Environmental Research, 15(4), 655-665. https://doi.org/10.1007/s41742-021-00336-y
Batubara, S. F., Agus, F., Rauf, A., & Elfiati, D. (2019). Impact of soil collar insertion depth on microbial respiration measurements from tropical peat under an oil palm plantation. Mires and Peat, 24, Article 06. https://doi.org/10.19189/MaP.2018.DW.373
Cooper, H. V., Evers, S., Aplin, P., Crout, N., Dahalan, M. P. B., & Sjogersten, S. (2020). Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation. Nature communications, 11(1), Article 407. https://doi.org/10.1038/s41467-020-14298-w
Fitra, S. J., Prijono, S., & Maswar, M. (2019). The effect of fertilization of peat land on soil characteristics, CO2 emissions, and productivity of rubber plant. Jurnal Tanah dan Sumberdaya Lahan, 6(1), 1145-1156. https://doi.org/10.21776/ub.jtsl.2019.006.1.13
Hayati, N., Sari, N., Arief, R., & Uzzulfa, M. A. (2022). Parameters to estimate CO2 emission in peatland area based on carbon content and subsidence rate from SAR interferometry. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 43(B3-2022), 277–284. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-277-2022
Haron, K., Mohammed, A. T., Halim, R. M., & Din, A. K. (2008). Palm-Based Bio-Fertilizer from Decanter Cake and Boiler Ash of Palm Oil Mill. Malaysian Palm Oil Board (MPOB).
Hartatik, W., Subiksa, I. G. M., & Dariah, A. (2011). Sifat Kimia dan Fisik Tanah Gambut. Pada: Pengelolaan Lahan Gambut Berkelanjutan [Chemical and Physical Properties on Peat Soil. In: Sustainable Peat Soil Management] Balai Penelitian Tanah.
Hoyt, A. M., Gandois, L., Eri, J., Kai, F. M., Harvey, C. F., & Cobb, A. R. (2019). CO2 emissions from an undrained tropical peatland: Interacting influences of temperature, shading and water table depth. Global Change Biology, 25(9), 2885-2899. https://doi.org/10.1111/gcb.14702
Ichriani, G. I., Sulistiyanto, Y., & Chotimah, H. E. N. C. (2021). The use of ash and biochar derived oil palm bunch and coal fly ash for improvement of nutrient availability in peat soil of Central Kalimantan. Journal of Degraded and Mining Lands Management, 8(3), 2703. https://doi.org/10.15243/jdmlm. 2021.083.2703
IPCC. (2022). Climate Change 2022 Mitigation of Climate Change - Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change.
Lestari, I., Murdiyarso, D., & Taufik, M. (2022). Rewetting tropical peatlands reduced net greenhouse gas emissions in Riau province, Indonesia. Forests, 13(4), Article 505. https://doi.org/10.3390/f13040505
Lin, S., Zhang, S., Shen, G., Shaaban, M., Ju, W., Cui, Y., Duan, C., & Fang, L. (2021). Effects of inorganic and organic fertilizers on CO2 and CH4 fluxes from tea plantation soil. Elementa, 9(1), Article 090. https://doi.org/10.1525/elementa.2021.090
Loisel, J., Gallego-Sala, A. V., Amesbury, M. J., Magnan, G., Anshari, G., Beilman, D. W., Benavides, J. C., Blewett, J., Camill, P., Charman, D. J., Chawchai, S., Hedgpeth, A., Kleinen, T., Korhola, A., Large, D., Mansilla, C. A., Muller, J., Belleh, S. V., West, J. B., … & Wu, J. (2021). Expert assessment of future vulnerability of the global peatland carbon sink. Nature climate change, 11(1), 70-77. https://doi.org/10.1038/s41558-020-00944-0
Ojanen, P., Penttilä, T., Tolvanen, A., Hotanen, J. P., Saarimaa, M., Nousiainen, H., & Minkkinen, K. (2019). Long-term effect of fertilization on the greenhouse gas exchange of low-productive peatland forests. Forest Ecology and Management, 432, 786–798. https://doi.org/10.1016/j.foreco.2018.10.015
Paramananthan, S. (2020). Organic Soil of Malaysia Standard Series Description. Param Agricultural Soil Survey.
Pratiwi, D., & Yuwati, T. W. (2022, November). Paludiculture: Peatland utilization to support climate change adaptation. IOP Conference Series: Earth and Environmental Science, 1109(1), Article 012001. https://doi.org/10.1088/1755-1315/1109/1/012001
Permatasari, N. A., Suswati, D., Arief, F. B., Aspan, A. A., & Akhmad, A. (2021). Identifikasi beberapa sifat kimia tanah gambut pada kebun kelapa sawit rakyat di Desa Rasau Jaya II Kabupaten Kubu Raya [Identification of chemical peat soil properties in smallholder oil palm plantation in Rasau Jaya II Village, Kubu Raya district]. Agritech: Jurnal Fakultas Pertanian Universitas Muhammadiyah Purwokerto, 23(2), 199-207. https://doi.org/10.30595/agritech.v23i2.12616
Prabowo, N. E., Foster, H. L., & Nelson, P. N. (2023). Potassium and magnesium uptake and fertiliser use efficiency by oil palm at contrasting sites in Sumatra, Indonesia. Nutrient Cycling in Agroecosystems, 126(2), 263-278. https://doi.org/10.1007/s10705-023-10289-7
Razak, F. R. (2019). Dampak Pemupukan Tanaman Kelapa Sawit Terhadap Respirasi Heterotrofik di Lahan Gambut [The Impact of Oil Palm Fertilization on Heterotrophic Respiration in Peat Soil]. Fakultas Pertanian, Universitas Tanjungpura
Ray, R. L., Griffin, R. W., Fares, A., Elhassan, A., Awal, R., Woldesenbet, S., & Risch, E. (2020). Soil CO2 emission in response to organic amendments, temperature, and rainfall. Scientific Reports, 10(1), Article 5849. https://doi.org/10.1038/s41598-020-62267-6
Sutarno, M. S., & Mohamad, H. M. (2023). Peat soil compaction characteristic and physicochemical changes treated with eco-processed pozzolan (EPP). Civil Engineering Journal (Iran), 9(1), 86–103. https://doi.org/10.28991/CEJ-2023-09-01-07
Saputra, R. A., & Sari, N. N. (2021). Ameliorant engineering to elevate soil pH, growth, and productivity of paddy on peat and tidal land. IOP Conference Series: Earth and Environmental Science, 648(1), Article 012183. https://doi.org/10.1088/1755-1315/648/1/012183
Sano, T., Hirano, T., Liang, N., Hirata, R., & Fujinuma, Y. (2010). Carbon dioxide exchange of a larch forest after a typhoon disturbance. Forest Ecology and Management, 260(12), 2214–2223. https://doi.org/10.1016/j.foreco.2010.09.026
Stephanie, M. C., Gusmayanti, E., & Pramulya, M. (2021). Emisi CO2 pada perkebunan kelapa sawit di lahan gambut yang telah mengalami pemupukan. [CO2 emission in oil palm plantations on peat soil that have been fertilized]. In Prosiding Seminar Nasional Penerapan Ilmu Pengetahuan Dan Teknologi : Kampus Merdeka Meningkatkan Kecerdasan Sumberdaya Manusia Melalui Interdispliner Ilmu Pengetahuan Dan Teknologi (pp. 205-210). Universitas Tanungpura. https://doi.org/10.26418/pipt.2021.8
Suratman, Sukarman & Hariyadi. (2013, Mei 29). Peran amelioran tanah mineral dalam mengendalikan laju emisi CO2 pada lahan gambut [The role of mineral soil as ameliorant in controlling the rate of CO2 emission in peat soil]. [Paper presentation]. Prosiding Seminar Nasional Pertanian Ramah Lingkungan, Bogor, Indonesia.
Subandi, S. (2013). Peran dan pengelolaan hara kalium untuk produksi pangan di Indonesia [The role and management of potassium nutrient for food production in Indonesia]. Pengembangan Inovasi Pertanian, 6(1), 1-10.
Taufik, M., Minasny, B., McBratney, A. B., Van Dam, J. C., Jones, P. D., & Van Lanen, H. A. J. (2020). Human-induced changes in Indonesian peatlands increase drought severity. Environmental Research Letters, 15(8), Article 084013. https://doi.org/10.1088/1748-9326/ab96d4
Tohiruddin, L. (2006). Comparison of the response of oil palm fertilisers at different locations in north and south Sumatra. In International Oil Palm Conference 2006, Nusa Dua, Bali (pp. 188-200). CiNii.
Vernimmen, R., Hooijer, A., Akmalia, R., Fitranatanegara, N., Mulyadi, D., Yuherdha, A., Andreas, H., & Page, S. (2020). Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern Sumatra. Carbon Balance and Management, 15(1), Article 4. https://doi.org/10.1186/s13021-020-00139-2
Winarna, W., Yusuf, M. A., Rahutomo, S., & Sutarta, E. S. (2017). Impacts of water table and soil ameliorant on soil moisture, CO2 emission, and oil palm yield on peat soil. Jurnal Penelitian Kelapa Sawit, 25(3), 147-160. https://doi.org/10.22302/iopri.jur.jpks.v25i3.32
ISSN 1511-3701
e-ISSN 2231-8542