e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 44 (1) Feb. 2021 / JTAS-2040-2020


Holistic Approaches to Reducing Salmonella Contamination in Poultry Industry

Ummu Afiqah Abdul-Rahiman, Noordiana Nordin, Noor Azira Abdul-Mutalib and Maimunah Sanny

Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 1, February 2021


Keywords: Contamination, control, poultry industry, prevention, Salmonella

Published on: 24 Febuary 2021

Salmonella are widely found in the poultry industry, which subsequently may pose a risk to animal and human health. The aim of this review is to highlight strategies for the prevention and control of Salmonella at each stage in the poultry production chain by monitoring risks from the farm to the retailer. Among the primary approaches for control of Salmonella at the farm level includes the administration of synthetic and natural compounds to live chickens (vaccination and antibiotic), litter management as well as fortification of feed and acidification of drinking water. In the poultry processing plant, multiple hurdle technology and different chilling conditions to reduce Salmonella were discussed. In the retail level, an effective monitoring program to control Salmonella contamination by good manufacturing practices and hazard analysis and critical control points has been reviewed. Overall, we conclude that these approaches play a role in reducing the dissemination of Salmonella in the poultry industry. However, there is no published data related to logistic scheduling of poultry processing.

  • Akil, L., Ahmad, H. A., & Reddy, R. S. (2014). Effects of climate change on Salmonella infections. Foodborne Pathogens and Disease, 11(12), 974-980.

  • Alfama, E. R. G., Hessel, C. T., de Oliveira Elias, S., Magalhães, C. R. P., Santiago, M. F. T., Anschau, M., & Tondo, E. C. (2019). Assessment of temperature distribution of cold and hot meals in food services and the prediction growth of Salmonella spp. and Listeria monocytogenes. Food Control, 106, 106725.

  • Bailey, J. S., Cox, N. A., Craven, S. E., & Cosby, D. E. (2002). Serotype tracking of Salmonella through integrated broiler chicken operations. Journal of Food Protection, 65(5), 742-745.

  • Bansal, N. S., Gray, V., & McDonell, F. (2006). Validated PCR assay for the routine detection of Salmonella in food. Journal of Food Protection, 69(2), 282-287.

  • Barrow, P. A. (2007). Salmonella infections: Immune and non-immune protection with vaccines. Avian Pathology, 36(1), 1–13.

  • Bauermeister, L. J., Bowers, J. W., Townsend, J. C., & McKee, S. R. (2008). Validating the efficacy of peracetic acid mixture as an antimicrobial in poultry chillers. Journal of Food Protection, 71(6), 1119-1122.

  • Bedford, M. R. (1996). Interaction between ingested feed and the digestive system in poultry. Journal of Applied Poultry Research, 5(1), 86-95.

  • Bennoune, O., Melizi, M., Khazal, K., & Bourouba, R. (2009). Avian cationic antimicrobial peptides in health and disease: A mini review. Journal of Animal and Veterinary Advances, 8(4), 755-759.

  • Biswas, C., Leboveic, A., Burke, K., & Biswas, D. (2019). Post-harvest approaches to improve poultry meat safety. In Food safety in poultry meat production (pp. 123-138). Springer.

  • Botteldoorn, N., Heyndrickx, M., Rijpens, N., Grijspeerdt, K., & Herman, L. (2003). Salmonella on pig carcasses: Positive pigs and cross contamination in the slaughterhouse. Journal of Applied Microbiology, 95(5), 891-903.

  • Bryan, F. L. (1980). Foodborne diseases in the United States associated with meat and poultry. Journal of Food Protection, 43(2), 140-150.

  • Byrd, J. A., Burnham, M. R., McReynolds, J. L., Anderson, R. C., Genovese, K. J., Callaway, T. R., Kubena, L. F., & Nisbet, D. J. (2008). Evaluation of an experimental chlorate product as a preslaughter feed supplement to reduce Salmonella in meat-producing birds. Poultry Science, 87(9), 1883-1888.

  • Carramiñana, J. J., Yangüela, J., Blanco, D., Rota, C., Agustin, A. I., Ariño, A., & Herrera, A. (1997). Salmonella incidence and distribution of serotypes throughout processing in a Spanish poultry slaughterhouse. Journal of Food Protection, 60(11), 1312-1317.

  • Chalghoumi, R., Beckers, Y., Portetelle, D., & Théwis, A. (2009). Hen egg yolk antibodies (IgY), production and use for passive immunization against bacterial enteric infections in chicken: A review. Biotechnology, Agronomy, and Society and Environment, 13(2), 295-308.

  • Chambers, J. R., Spencer, J. L., & Modler, H. W. (1997). The influence of complex carbohydrates on Salmonella Typhimurium colonization, pH, and density of broiler ceca. Poultry Science, 76(3), 445-451.

  • Chappell, L., Kaiser, P., Barrow, P., Jones, M. A., Johnston, C., & Wigley, P. (2009). The immunobiology of avian systemic salmonellosis. Veterinary Immunology and Immunopathology, 128(1-3), 53-59.

  • Chen, C. L., Aziz, S. A., Soe, W. S., & Nordin, F. (2011). Isolation of Campylobacter and Salmonella from houseflies (Musca domestica) in a university campus and a poultry farm in Selangor, Malaysia. Tropical Biomedicine, 28(1), 16-20.

  • Cooper, G. L., Venables, L. M., Woodward, M. J., & Hormaeche, C. E. (1994). Invasiveness and persistence of Salmonella Enteritidis, Salmonella Typhimurium, and a genetically defined S. Enteritidis aroA strain in young chickens. Infection and Immunity, 62(11), 4739-4746.

  • Corrier, D. E., Hinton Jr., A., Ziprin, R. L., Beier, R. C., & DeLoach, J. R. (1990). Effect of dietary lactose on cecal pH, bacteriostatic volatile fatty acids, and Salmonella Typhimurium colonization of broiler chicks. Avian Diseases, 34(3), 617-625.

  • Corry, J. E. L., Allen, V. M., Hudson, W. R., Breslin, M. F., & Davies, R. H. (2002). Sources of Salmonella on broiler carcasses during transportation and processing: Modes of contamination and methods of control. Journal of Applied Microbiology, 92(3), 424-432.

  • Cox, N. A., Berrang, M. E., & Cason, J. A. (2000). Salmonella penetration of egg shells and proliferation in broiler hatching eggs - A review. Poultry Science, 79(11), 1571-1574.

  • Cummings, P. L., Sorvillo, F., & Kuo, T. (2010). Salmonellosis-related mortality in the United States, 1990-2006. Foodborne Pathogens and Disease, 7(11), 1393-1399.

  • D’Aoust, J. Y., & Maurer, J. (2007). Salmonella species. In Food microbiology: Fundamentals and frontiers (3rd ed.) (pp. 187-236). American Society for Microbiology.

  • Donado-Godoy, P., Clavijo, V., León, M., Tafur, M. A., Gonzales, S., Hume, M., & Doyle, M. P. (2012). Prevalence of Salmonella on retail broiler chicken meat carcasses in Colombia. Journal of Food Protection, 75(6), 1134-1138.

  • Donalson, L. M., McReynolds, J. L., Kim, W. K., Chalova, V. I., Woodward, C. L., Kubena, L. F., Nisbet, D. J., & Ricke, S. C. (2008). The influence of a fructooligosaccharide prebiotic combined with alfalfa molt diets on the gastrointestinal tract fermentation, Salmonella Enteritidis infection, and intestinal shedding in laying hens. Poultry Science, 87(7), 1253-1262.

  • El-Aziz, D. M. A. (2013). Detection of Salmonella Typhimurium in retail chicken meat and chicken giblets. Asian Pacific Journal of Tropical Biomedicine, 3(9), 678-681.

  • Esaki, H., Shimura, K., Yamazaki, Y., Eguchi, M., & Nakamura, M. (2013). National surveillance of Salmonella Enteritidis in commercial eggs in Japan. Epidemiology and Infection, 141(5), 941-943.

  • Foley, S. L., Nayak, R., Hanning, I. B., Johnson, T. J., Han, J., & Ricke, S. C. (2011). Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Applied and Environmental Microbiology, 77(13), 4273-4279.

  • Frederick, A., & Huda, N. (2011). Salmonella, poultry house environments and feeds: A review. Journal of Animal and Veterinary Advances, 10(5), 679-685.

  • Gaffga, N. H., Behravesh, C. B., Ettestad, P. J., Smelser, C. B., Rhorer, A. R., Cronquist, A. B., Comstock, N. A., Bidol, S. A., Patel, N. J., Gerner-Smidt, P., Keene, W. E., Gomez, T. M., Hopkins, B. A., Sotir, M. J., & Angulo, F. J. (2012). Outbreak of salmonellosis linked to live poultry from a mail-order hatchery. New England Journal of Medicine, 366(22), 2065-2073.

  • Gal-Mor, O., Boyle, E. C., & Grassl, G. A. (2014). Same species, different diseases: How and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Frontiers in Microbiology, 5, 391.

  • Gast, R. K., & Porter Jr., R. E. (2020). Salmonella infections.

  • Gebreyes, W. A., Thakur, S., Davies, P. R., Funk, J. A., & Altier, C. (2004). Trends in antimicrobial resistance, phage types and integrons among Salmonella serotypes from pigs, 1997–2000. Journal of Antimicrobial Chemotherapy, 53(6), 997-1003.

  • Gehring, K. B., & Kirkpatrick, R. (2020). Hazard analysis and critical control points (HACCP). In Food safety engineering (pp. 191-204). Springer.

  • González-Miret, M. L., Escudero-Gilete, M. L., & Heredia, F. J. (2006). The establishment of critical control points at the washing and air chilling stages in poultry meat production using multivariate statistics. Food Control, 17(12), 935-941.

  • Graham, S. M. (2002). Salmonellosis in children in developing and developed countries and populations. Current Opinion in Infectious Diseases, 15(5), 507-512.

  • Grimont, P. A., & Weill, F. X. (2007). Antigenic formulae of the Salmonella serovars.

  • Ha, J., Park, E., Kim, J. S., Lee, S., Kim, S., Lee, J., Choi, Y., Yoon, Y., Oh, H., Kim, Y., Lee, Y., Seo, Y., & Kang, J. (2020). Prevalence of Salmonella in cucumbers, antibiotic and acid resistances and description of the kinetic behavior with dynamic model during storage. Journal of Food Safety, 40(2), 12760.

  • Heres, L., Engel, B., Van Knapen, F., De Jong, M. C., Wagenaar, J. A., & Urlings, H. A. (2003). Fermented liquid feed reduces susceptibility of broilers for Salmonella Enteritidis. Poultry Science, 82(4), 603-611.

  • Hume, M. E., Nisbet, D. J., & DeLoach, J. R. (1997). In vitro 14C-amino acid fermentation by CF3™, a characterized continuous-flow competitive exclusion culture of caecal bacteria. Journal of Applied Microbiology, 83(2), 236-242.

  • Ishihara, K., Nakazawa, C., Nomura, S., Elahi, S., Yamashita, M., & Fujikawa, H. (2020). Effects of climatic elements on Salmonella contamination in broiler chicken meat in Japan. Journal of Veterinary Medical Science, 82(5), 646-652.

  • James, C., Vincent, C., de Andrade Lima, T. I., & James, S. J. (2006). The primary chilling of poultry carcasses — A review. International Journal of Refrigeration, 29(6), 847-862.

  • Jin, L. Z., Ho, Y. W., Ali, M. A., Abdullah, N., & Jalaludin, S. (1996). Effect of adherent Lactobacillus spp. on in vitro adherence of salmonellae to the intestinal epithelial cells of chicken. Journal of Applied Bacteriology, 81(2), 201-206.

  • Joerger, R. D. (2003). Alternatives to antibiotics: Bacteriocins, antimicrobial peptides and bacteriophages. Poultry Science, 82(4), 640–647.

  • Jones, F. T., Axtell, R. C., Rives, D. V., Scheideler, S. E., Tarver Jr., F. R., Walker, R. L., & Wineland, M. J. (1991). A survey of Salmonella contamination in modern broiler production. Journal of Food Protection, 54(7), 502-507.

  • Juneja, V. K., Melendres, M. V., Huang, L., Gumudavelli, V., Subbiah, J., & Thippareddi, H. (2007). Modeling the effect of temperature on growth of Salmonella in chicken. Food Microbiology, 24(4), 328-335.

  • Kim, K. T., Kim, J. H., Park, Y. M., Myung, K. S., & Park, T. W. (2017). Comparison of preservation in poultry carcasses processed by different chilling systems. Korean Journal of Veterinary Service, 40(4), 245-251.

  • Klasing, K. C. (1998). Nutritional modulation of resistance to infectious diseases. Poultry Science, 77(8), 1119–1125.

  • Lee, J. H. (2015). Protection against Salmonella Typhimurium, Salmonella Gallinarum, and Salmonella Enteritidis infection in layer chickens conferred by a live attenuated Salmonella Typhimurium strain. Immune Network, 15(1), 27-36.

  • Li, E. K., Cohen, M. G., Ho, A. K., & Cheng, A. F. (1993). Salmonella bacteraemia occurring concurrently with the first presentation of systemic lupus erythematosus. Rheumatology, 32(1), 66-67.

  • Mamber, S. W., & Katz, S. E. (1985). Effects of antimicrobial agents fed to chickens on some Gram-negative enteric bacilli. Applied and Environmental Microbiology, 50(3), 638-648.

  • Mani-Lopez, E., García, H. S., & López-Malo, A. (2012). Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 45(2), 713-721.

  • Marin, C., & Lainez, M. (2009). Salmonella detection in faeces during broiler rearing and after live transport to the slaughterhouse. Poultry Science, 88(9), 1999-2005.

  • Masoumbeigi, H., Tavakoli, H. R., Koohdar, V., Mashak, Z., & Qanizadeh, G. (2017). The environmental influences on the bacteriological quality of red and chicken meat stored in fridges. Asian Pacific Journal of Tropical Biomedicine, 7(4), 367-372.

  • Masson, M., Delarue, J., & Blumenthal, D. (2017). An observational study of refrigerator food storage by consumers in controlled conditions. Food Quality and Preference, 56(Part B), 294-300.

  • Mazengia, E., Fisk, C., Liao, G., Huang, H., & Meschke, J. (2015). Direct observational study of the risk of cross-contamination during raw poultry handling: Practices in private homes. Food Protection Trends, 35(1), 8-23.

  • McDevitt, R. M., Brooker, J. D., Acamovic, T., & Sparks, N. H. C. (2006). Necrotic enteritis; A continuing challenge for the poultry industry. World’s Poultry Science Journal, 62(2), 221-247.

  • Mead, G. C. (Ed.). (2012). Processing of poultry.

  • Mead, G. G., & Thomas, N. L. (1973). Factors affecting the use of chlorine in the spin-chilling of eviscerated poultry. British Poultry Science, 14(1), 99-117.

  • Micciche, A. C., Feye, K. M., Rubinelli, P. M., Wages, J. A., Knueven, C. J., & Ricke, S. C. (2018). The implementation and food safety issues associated with poultry processing reuse water for conventional poultry production systems in the United States. Frontiers in Sustainable Food Systems, 2, 70.

  • Milona, P., Townes, C. L., Bevan, R. M., & Hall, J. (2007). The chicken host peptides, gallinacins 4, 7, and 9 have antimicrobial activity against Salmonella serovars. Biochemical and Biophysical Research Communications, 356(1), 169-174.

  • Mulder, R. W. A. W. (1995). Impact of transport and related stresses on the incidence and extent of human pathogens in pig meat and poultry. Journal of Food Safety, 15(3), 239-246.

  • Mulder, R. W. A. W., Dorresteijn, L. W. J., & Van Der Broek, J. (1978). Cross-contamination during the scalding and plucking of broilers. British Poultry Science, 19(1), 61-70.

  • Nagel, G. M., Bauermeister, L. J., Bratcher, C. L., Singh, M., & McKee, S. R. (2013). Salmonella and Campylobacter reduction and quality characteristics of poultry carcasses treated with various antimicrobials in a post-chill immersion tank. International Journal of Food Microbiology, 165(3), 281-286.

  • Nde, C. W., McEvoy, J. M., Sherwood, J. S., & Logue, C. M. (2007). Cross contamination of turkey carcasses by Salmonella species during defeathering. Poultry Science, 86(1), 162-167.

  • Northcutt, J. K., & Russell, S. M. (2010). General guidelines for implementation of HACCP in a poultry processing plant.

  • Painter, J. A., Hoekstra, R. M., Ayers, T., Tauxe, R. V., Braden C. R., Angulo, F. J., & Griffin, P. M. (2013). Attribution of foodborne illnesses, hospitalizations and deaths to food commodities by using outbreak data, United States, 1998-2008. Emerging Infectious Diseases, 19(3), 407.

  • Park, S. H., Aydin, M., Khatiwara, A., Dolan, M. C., Gilmore, D. F., Bouldin, J. L., Ahn, S., & Ricke, S. C. (2014). Current and emerging technologies for rapid detection and characterization of Salmonella in poultry and poultry products. Food Microbiology, 38, 250-262.

  • Public Health Notice. (2015). Public Health Notice - Outbreak of Salmonella infections linked to frozen raw breaded chicken products.

  • Rahimi, S., Zahra Moghadam, S., Taghi Zahraei, S., Torshizi, M. A. K., & Grimes, J. L. (2007). Prevention of Salmonella infection in poultry by specific egg-derived antibody. International Journal of Poultry Science, 6(4), 230-235.

  • Raji, A. O. (2018). Comparative evaluation of some properties of chicken and Japanese quail eggs subjected to different storage methods. Poultry Science Journal, 6(2), 155-164.

  • Rasschaert, G., Houf, K., Godard, C., Wildemauwe, C., Pastuszczak-Frak, M., & De Zutter, L. (2008). Contamination of carcasses with Salmonella during poultry slaughter. Journal of Food Protection, 71(1), 146-152.

  • Reed, K. A., Hobert, M. E., Kolenda, C. E., Sands, K. A., Rathman, M., O’Connor, M., & Madara, J. L. (2002). The Salmonella Typhimurium flagellar basal body protein FliE is required for flagellin production and to induce a proinflammatory response in epithelial cells. Journal of Biological Chemistry, 277(15), 13346-13353.

  • Rodríguez, D. M., & Suárez, M. C. (2014). Salmonella spp. in the pork supply chain: A risk approach. Revista Colombiana de Ciencias Pecuarias, 27(2), 65-75.

  • Rouger, A., Tresse, O., & Zagorec, M. (2017). Bacterial contaminants of poultry meat: Sources, species, and dynamics. Microorganisms, 5(3), 50.

  • Rusmana, I., & Nedwell, D. B. (2004). Use of chlorate as a selective inhibitor to distinguish membrane-bound nitrate reductase (Nar) and periplasmic nitrate reductase (Nap) of dissimilative nitrate reducing bacteria in sediment. FEMS Microbiology Ecology, 48(3), 379-386.

  • Salomonsson, A. C., Aspán, A., Johansson, S., Heino, A., & Häggblom, P. (2005). Salmonella detection by polymerase chain reaction after pre-enrichment of feed samples. Journal of Rapid Methods and Automation in Microbiology, 13(2), 96-110.

  • Santos, A. A. (2005). Poultry intestinal health through diet formulation and exogenous enzyme supplementation [Doctoral thesis, North Carolina State University]. NC State University Libraries.

  • Scallan, E., Hoekstra, R. M., Angulo, F. J., Tauxe, R. V., Widdowson, M. A., Roy, S. L., & Griffin, P. M. (2011). Foodborne illness acquired in the United States — Major pathogens. Emerging Infectious Diseases, 17(1), 7.

  • Schikora, A., Virlogeux-Payant, I., Bueso, E., Garcia, A. V., Nilau, T., Charrier, A., Pelletier, S., Menanteau, P., Baccarini, M., Velge, P., & Hirt, H. (2011). Conservation of Salmonella infection mechanisms in plants and animals. PLOS One, 6(9), e24112.

  • Schraidt, O., & Marlovits, T. C. (2011). Three-dimensional model of Salmonella’s needle complex at subnanometer resolution. Science, 331(6021), 1192-1195.

  • Seo, S., & Lee, M. (2004). The serogroup and antimicrobial resistance of Salmonella spp. isolated from the clinical specimens during 6 years in a tertiary university hospital. Korean Journal of Clinical Microbiology, 7(1), 72-76.

  • Shafini, A. B., R. Son, N. A., Mahyudin, N. A., Rukayadi, Y., & Tuan Zainazor, Y. C. (2017). Prevalence of Salmonella spp. in chicken and beef from retail outlets in Malaysia. International Food Research Journal, 24(1), 437-449.

  • Shivaprasad, H. L., Timoney, J. F., Morales, S., Lcio, B., & Baker, R. C. (1990). Pathogenesis of Salmonella Enteritidis infection in laying chickens. I. Studies on egg transmission, clinical signs, fecal shedding and serological responses. Avian Diseases, 34(3), 548-557.

  • Silva, F., Domingues, F. C., & Nerín, C. (2018). Trends in microbial control techniques for poultry products. Critical Reviews in Food Science and Nutrition, 58(4), 591-609.

  • Singh, B. R., Singh, P., Verma, A., Agrawal, S., Babu, N., Chandra, M., & Agarwal, R. K. (2006). A study on prevalence of multi-drug-resistant (MDR) Salmonella in water sprinkled on fresh vegetables in Bareilly, Moradabad, and Kanpur (northern Indian cities). Journal of Public Health, 14(3), 125.

  • Slavik, M. F., Kim, J. W., & Walker, J. T. (1995). Reduction of Salmonella and Campylobacter on chicken carcasses by changing scalding temperature. Journal of Food Protection, 58(6), 689-691.

  • Stopforth, J. D., O’connor, R., Lopes, M., Kottapalli, B., Hill, W. E., & Samadpour, M. (2007). Validation of individual and multiple-sequential interventions for reduction of microbial populations during processing of poultry carcasses and parts. Journal of Food Protection, 70(6), 1393-1401.

  • Tellez, G., Dean, C. E., Corrier, D. E., DeLoach, J. R., Jaeger, L., & Hargis, B. M. (1993). Effect of dietary lactose on cecal morphology, pH, organic acids and Salmonella Enteritidis organ invasion in Leghorn chicks. Poultry Science, 72(4), 636–642.

  • Thomas, N. L. (1977). The continuous chilling of poultry in relation to EEC requirements. International Journal of Food Science and Technology, 12(2), 99-114.

  • Trinetta, V., McDaniel, A., Magossi, G., Yucel, U., & Jones, C. (2019). Effects of different moisture and temperature levels on Salmonella survival in poultry fat. Translational Animal Science, 3(4), 1369-1374.

  • van Asten, F. J., Hendriks, H. G., Koninkx, J. F., & van Dijk, J. E. (2004). Flagella-mediated bacterial motility accelerates but is not required for Salmonella serotype Enteritidis invasion of differentiated Caco-2 cells. International Journal of Medical Microbiology, 294(6), 395-399.

  • Van der Vorst, J. G., Da Silva, C. A., & Trienekens, J. H. (2007). Agro-industrial supply chain management: Concepts and applications.

  • van Dijk, A., Veldhuizen, E. J., Kalkhove, S. I., Tjeerdsma-van Bokhoven, J. L., Romijn, R. A., & Haagsman, H. P. (2007). The β-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrobial Agents and Chemotherapy, 51(3), 912-922.

  • Van Immerseel, F., Russell, J. B., Flythe, M. D., Gantois, I., Timbermont, L., Pasmans, F., Haesebrouck, F., & Ducatelle, R. (2006). The use of organic acids to combat Salmonella in poultry: A mechanistic explanation of the efficacy. Avian Pathology, 35(3), 182–188.

  • Vandeplas, S., Dauphin, R. D., Beckers, Y., Thonart, P., & Thewis, A. (2010). Salmonella in chicken: Current and developing strategies to reduce contamination at farm level. Journal of Food Protection, 73(4), 774-785.

  • Vicente, J. L., Higgins, S. E., Hargis, B. M., & Tellez, G. (2007). Effect of poultry guard litter amendment on horizontal transmission of Salmonella Enteritidis in broiler chicks. International Journal of Poultry Science, 6(5), 314–317.

  • White, P. L., Baker, A. R., & James, W. O. (1997). Strategies to control Salmonella and Campylobacter in raw poultry products. Revue Scientifique et Technique-Office International des Epizooties, 16(2), 525-541.

  • Wierup, M., Engström, B., Engvall, A., & Wahlström, H. (1995). Control of Salmonella Enteritidis in Sweden. International Journal of Food Microbiology, 25(3), 219-226.

  • Wirsenius, S., Azar, C., & Berndes, G. (2010). How much land is needed for global food production under scenarios of dietary changes and livestock productivity increase in 2030?. Agricultural Systems, 103(9), 621-638.

  • Yang, Z., Li, Y., & Slavik, M. (1998). Use of antimicrobial spray applied with an inside–outside birdwasher to reduce bacterial contamination on prechilled chicken carcasses. Journal of Food Protection, 61(7), 829-832.

  • Zanin, L. M., da Cunha, D. T., de Rosso, V. V., Capriles, V. D., & Stedefeldt, E. (2017). Knowledge, attitudes and practices of food handlers in food safety: An integrative review. Food Research International, 100, 53-62.

  • Zhu Y., Lai H., Zou L., Yin S., Wang C., Han X., Xia X., Hu K., He L., Zhou K., Chen S., Ao, X., & Liu, S. (2017). Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China. International Journal of Food Microbiology, 259, 43-51.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Recent Articles