Home / Regular Issue / JTAS Vol. 44 (4) Nov. 2021 / JTAS-2080-2020

 

Comparative Genomics of Copia and Gypsy Retroelements in Three Banana Genomes: A, B, and S Genomes

Sigit Nur Pratama, Fenny Martha Dwivany and Husna Nugrahapraja

Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 4, November 2021

DOI: https://doi.org/10.47836/pjtas.44.4.01

Keywords: Banana, B, A, and S genomes, reverse transcriptase, transposable elements

Published on: 2 November 2021

In plants, the proportion of transposable elements (TEs) is generally dominated by long terminal repeat (LTR) retroelements. Therefore, it significantly impacts on genome expansion and genetic and phenotypic variation, namely Copia and Gypsy. Despite such contribution, TEs characterisation in an important crop such as banana [Musa balbisiana (B genome), Musa acuminata (A genome), and Musa schizocarpa (S genome)] remains poorly understood. This study aimed to compare B, A, and S genomes based on repetitive element proportions and copy numbers and determine the evolutionary relationship of LTR using phylogenetic analysis of the reverse transcriptase (RT) domain. Genome assemblies were acquired from the Banana Genome Hub (banana-genome-hub.southgreen.fr). Repetitive elements were masked by RepeatMasker 4.0.9 before Perl parsing. Phylograms were constructed according to domain analysis using DANTE (Domain-based ANnotation of Transposable Elements), alignments were made using MAFFT 7 (multiple alignments using fast Fourier transform), and trees were inferred using FastTree 2. The trees were inspected using SeaView 4 and visualised with FigTree 1.4.4. We reported that B, A, and S genomes are composed of repetitive elements with 19.38%, 20.78%, and 25.96%, respectively. The elements were identified with dominant proportions in the genome are LTR, in which Copia is more abundant than Gypsy. Based on RT phylogenetic analysis, LTR elements are clustered into 13 ancient lineages in which Sire (Copia) and Reina (Gypsy) are shown to be the most abundant LTR lineages in bananas.

  • Bailly-Bechet, M., Haudry, A., & Lerat, E. (2014). “One code to find them all”: A perl tool to conveniently parse RepeatMasker output files. Mobile DNA, 5(1), 13. https://doi.org/10.1186/1759-8753-5-13

  • Belser, C., Istace, B., Denis, E., Dubarry, M., Baurens, F. C., Falentin, C., Genete, M., Berrabah, W., Chèvre, A. M., Delourme, R., & Deniot, G. (2018). Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. Nature Plants, 4(11), 879–887. https://doi.org/10.1038/s41477-018-0289-4

  • Benson, G. (1999). Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research, 27(2), 573-580. https://doi.org/10.1093/nar/27.2.573

  • Chabannes, M., Baurens, F.-C., Duroy, P.-O., Bocs, S., Vernerey, M.-S., Rodier-Goud, M., Barbe, V., Gayral, P., & Iskra-Caruana, M.-L. (2013). Three infectious viral species lying in wait in the banana genome. Journal of Virology, 87(15), 8624–8637. https://doi.org/10.1128/jvi.00899-13

  • D’Hont, A., Paget-Goy, A., Escoute, J., & Garreel, F. (2000). The interspecific genome structure of cultivated banana, Musa spp. revealed by genome DNA in situ hybridization. Theoretical and Applied Genetics, 100(2), 177–183. https://doi.org/10.1007/s001220050024

  • D’Hont, A., Denoeud, F., Aury, J. M., Baurens, F. C., Carreel, F., Garsmeur, O., Noel, B., Bocs, S., Droc, G., Rouard, M., Da Silva, C., Jabbari, K., Cardi, C., Poulain, J., Souquet, M., Labadie, K., Jourda, C., Lengellé, J., Rodier-Goud, M., … Wincker, P. (2012). The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature, 488(7410), 213–217. https://doi.org/10.1038/nature11241

  • Davey, M. W., Gudimella, R., Harikrishna, J. A., Sin, L. W., Khalid, N., & Keulemans, J. (2013). A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids. BMC Genomics, 14(1), 683. https://doi.org/10.1186/1471-2164-14-683

  • Dewannieux, M., Esnault, C., & Heidmann, T. (2003). LINE-mediated retrotransposition of marked Alu sequences. Nature Genetics, 35(1), 41-48. https://doi.org/10.1038/ng1223

  • Doležel, J., Doleželová, M., & Novák, F. J. (1994). Flow cytometric estimation of nuclear DNA amount in diploid bananas (Musa acuminata and M. balbisiana). Biologia Plantarum, 36(3), 351. https://doi.org/10.1007/BF02920930

  • Domingues, D. S., Cruz, G. M. Q., Metcalfe, C. J., Nogueira, F. T. S., Vicentini, R., de S Alves, C., & van Sluys, M. A. (2012). Analysis of plant LTR-retrotransposons at the fine-scale family level reveals individual molecular patterns. BMC Genomics, 13(1), 137. https://doi.org/10.1186/1471-2164-13-137

  • Droc, G., Larivière, D., Guignon, V., Yahiaoui, N., This, D., Garsmeur, O., Dereeper, A., Hamelin, C., Argout, X., Dufayard, J.-F., Lengelle, J., Baurens F.-C., Cenci, A., Pitollat, B., D’Hont, A., Ruiz, M., Rouard, M., & Bocs, S. (2013). The Banana Genome Hub. Database, 2013, bat035. https://doi.org/10.1093/database/bat035

  • Du, J., Tian, Z., Bowen, N. J., Schmutz, J., Shoemaker, R. C., & Ma, J. (2010). Bifurcation and enhancement of autonomous-nonautonomous retrotransposon partnership through LTR swapping in soybean. Plant Cell, 22(1), 48–61. https://doi.org/10.1105/tpc.109.068775

  • Food and Agriculture Organization. (2019). FAOSTAT: Crops. http://www.fao.org/faostat/en/#data

  • Gouy, M., Guindon, S., & Gascuel, O. (2010). Sea view version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221–224. https://doi.org/10.1093/molbev/msp259

  • Hoen, D. R., & Bureau, T. E. (2015). Discovery of novel genes derived from transposable elements using integrative genomic analysis. Molecular Biology and Evolution, 32(6), 1487–1506. https://doi.org/10.1093/molbev/msv042

  • Hřibová, E., Neumann, P., Matsumoto, T., Roux, N., Macas, J., & Doležel, J. (2010). Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biology, 10(1), 204. https://doi.org/10.1186/1471-2229-10-204

  • Hubley, R., Finn, R. D., Clements, J., Eddy, S. R., Jones, T. A., Bao, W., Smit, A. F. A., & Wheeler, T. J. (2016). The Dfam database of repetitive DNA families. Nucleic Acids Research, 44(D1), D81-D89. https://doi.org/10.1093/nar/gkv1272

  • Joly-Lopez, Z., Hoen, D. R., Blanchette, M., & Bureau, T. E. (2016). Phylogenetic and genomic analyses resolve the origin of important plant genes derived from transposable elements. Molecular Biology and Evolution, 33(8), 1937–1956. https://doi.org/10.1093/molbev/msw067

  • Jurka, J., Kapitonov, V. V., Pavlicek, A., Klonowski, P., Kohany, O., & Walichiewicz, J. (2005). Repbase Update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research, 110(1-4), 462-467. https://doi.org/10.1159/000084979

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010

  • Kaul, S., Koo, H. L., Jenkins, J., Rizzo, M., Rooney, T., Tallon, L. J., Feldblyum, T., Nierman, W., Benito, M. I., Lin, X., Town, C. D., Venter, J. C., Fraser, C. M., Tabata, S., Nakamura, Y., Kaneko, T., Sato, S., Asamizu, E., Kato, T., … Somerville, C. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408(6814), 796-815. https://doi.org/10.1038/35048692

  • Kidwell, M. G. (2002). Transposable elements and the evolution of genome size in eukaryotes. Genetica, 115(1), 49-63. https://doi.org/10.1023/A:1016072014259

  • Knip, M., Hiemstra, S., Sietsma, A., Castelein, M., de Pater, S., & Hooykaas, P. (2013). DAYSLEEPER: A nuclear and vesicular-localized protein that is expressed in proliferating tissues. BMC Plant Biology, 13(1), 211. https://doi.org/10.1186/1471-2229-13-211

  • Lin, R., Ding, L., Casola, C., Ripoll, D. R., Feschotte, C., & Wang, H. (2007). Transposase-derived transcription factors regulate light signaling in Arabidopsis. Science, 318(5854), 1302-1305. https://doi.org/10.1126/science.1146281

  • Lisch, D. (2013). How important are transposons for plant evolution?. Nature Reviews Genetics, 14(1), 49–61. https://doi.org/10.1038/nrg3374

  • Llorens, C., Muñoz-Pomer, A., Bernad, L., Botella, H., & Moya, A. (2009). Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees. Biology Direct, 4(1), 41. https://doi.org/10.1186/1745-6150-4-41

  • Martin, G., Baurens, F. C., Droc, G., Rouard, M., Cenci, A., Kilian, A., Hastie, A., Doležel, J., Aury, J.-M., Alberti, A., Carreel, F., & D’Hont, A. (2016). Improvement of the banana “Musa acuminata” reference sequence using NGS data and semi-automated bioinformatics methods. BMC Genomics, 17(1), 243. https://doi.org/10.1186/s12864-016-2579-4

  • Neumann, P., Novák, P., Hoštáková, N., & MacAs, J. (2019). Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA, 10(1), 1. https://doi.org/10.1186/s13100-018-0144-1

  • Novák, P., Neumann, P., & Macas, J. (2010). Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics, 11(1), 378. https://doi.org/10.1186/1471-2105-11-378

  • Nugrahapraja, H., Putri, A. E., & Martha, D. F. (2021). Genome-wide identification and characterization of the pectin methylesterase (PME) and pectin methylesterase inhibitor (PMEI) gene family in the banana A-genome (Musa acuminata) and B-genome (Musa balbisiana). Research Journal of Biotechnology, 16(2), 179–191.

  • Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 - Approximately maximum-likelihood trees for large alignments. PLOS One, 5(3), e9490. https://doi.org/10.1371/journal.pone.0009490

  • Ragupathy, R., You, F. M., & Cloutier, S. (2013). Arguments for standardizing transposable element annotation in plant genomes. Trends in Plant Science, 18(7), 367-376. https://doi.org/10.1016/j.tplants.2013.03.005

  • Rambaut, A. (2018). FigTree v. 1.4.4. http://Tree.Bio.Ed.Ac.Uk/Software/Figtree/

  • Shimodaira, H. (2002). An approximately unbiased test of phylogenetic tree selection. Systematic Biology, 51(3), 492-508. https://doi.org/10.1080/10635150290069913

  • Smit, A., Hubley, R., & Grenn, P. (2015). RepeatMasker Open-4.0.7. http://www.repeatmasker.org/

  • Vitte, C., Fustier, M. A., Alix, K., & Tenaillon, M. I. (2014). The bright side of transposons in crop evolution. Briefings in Functional Genomics and Proteomics, 13(4), 276–295. https://doi.org/10.1093/bfgp/elu002

  • Vitte, C., & Panaud, O. (2005). LTR retrotransposons and flowering plant genome size: Emergence of the increase/decrease model. Cytogenetic and Genome Research, 110(1–4), 91–107. https://doi.org/10.1159/000084941

  • Wicker, T., & Keller, B. (2007). Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Research, 17(7), 1072-1081. https://doi.org/10.1101/gr.6214107

  • Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, P., Chalhoub, B., Flavell, A., Leroy, P., Morgante, M., Panaud, O., Paux, E., SanMiguel, P., & Schulman, A. H. (2007). A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics, 8(12), 973-982. https://doi.org/10.1038/nrg2165

  • Wu, W., Yang, Y.-L., He, W.-M., Rouard, M., Li, W.-M., Xu, M., Roux, N., & Ge, X.-J. (2016). Whole genome sequencing of a banana wild relative Musa itinerans provides insights into lineage-specific diversification of the Musa genus. Scientific Reports, 6(1), 31586. https://doi.org/10.1038/srep31586

  • Zhang, Q. J., & Gao, L. Z. (2017). Rapid and recent evolution of LTR retrotransposons drives rice genome evolution during the speciation of AA-genome Oryza species. G3: Genes, Genomes, Genetics, 7(6), 1875–1885. https://doi.org/10.1534/g3.116.037572

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JTAS-2080-2020

Download Full Article PDF

Share this article

Related Articles