e-ISSN 2231-8542
ISSN 1511-3701
Yahaya Yakubu, Soo Yee Lee and Khozirah Shaari
Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 4, November 2021
DOI: https://doi.org/10.47836/pjtas.44.4.06
Keywords: Curcuminoids, fatty acids, flavonoids, GCMS, hydrolysable tannins, Terminalia catappa , Terminalia subspathulata , UHPLC-ESI-MS/MS
Published on: 2 November 2021
Terminalia catappa and Terminalia subspathulata are two species of the Combretaceae family of medium to large forest trees. The fruits of T. catappa are known for the edible nuts commonly known as tropical almonds due to their similarity in taste with almonds of commerce. Therefore, the chemical profiles of the fruits of the two Terminalia species were examined to ascertain their potential value for food or health uses. Gas chromatography-mass spectrometry (GCMS) and ultrahigh-pressure liquid chromatography-electrospray ionisation tandem mass spectrometry (UHPLC-ESI-MS/MS) techniques were employed to profile the extracts to ensure good coverage of the classes of metabolites of the fruit extracts. The GCMS results revealed that T. catappa nuts were rich in palmitic acid (33.2%), linoleoyl chloride (29.1%), and oxacyclohexadecan-2-one commonly known as pentadecanolide (16.2%). In comparison, the major constituents of T. subspathulata fruits were palmitic acid (18.1%) and its methyl ester, methyl palmitate (9.3%). Furthermore, a total of 38 compounds were putatively identified in the 70% aqueous methanolic extracts of both species via UHPLC-ESI-MS/MS analysis, comprising three organic acids, sixteen hydrolysable tannins, ten phenolic acids, eight flavonoids, and a diarylheptanoid. The GCMS- and liquid chromatography-mass spectrometry- (LCMS-) LCMS-based metabolite profiles obtained in the present study have revealed the diversity of chemical constituents in the T. catappa nuts and T. subspathulata fruits, potentially valorised as functional foods nutraceutical ingredients for plant-based health products.
Abdel-Salam, O. M., Youness, E. R., Mohammed, N. A., Morsy, S. M. Y., Omara, E. A., & Sleem, A. A. (2014). Citric acid effects on brain and liver oxidative stress in lipopolysaccharide-treated mice. Journal of Medicinal Food, 17(5), 588-598. https://doi.org/10.1089/jmf.2013.0065
Adisakwattana, S. (2017). Cinnamic acid and its derivatives: Mechanisms for prevention and management of diabetes and its complications. Nutrients, 9(2), 163. https://doi.org/10.3390/nu9020163
Al Kadhi, O., Melchini, A., Mithen, R., & Saha, S. (2017). Development of a LC-MS/MS method for the simultaneous detection of tricarboxylic acid cycle intermediates in a range of biological matrices. Journal of Analytical Methods in Chemistry, 2017, 5391832. https://doi.org/10.1155/2017/5391832
Alam, A., Subhan, N., Hossain, H., Hossain, M., & Reza, H. M. (2016). Hydroxycinnamic acid derivatives : A potential class of natural compounds for the management of lipid metabolism and obesity. Nutrition and Metabolism, 13(1), 1–13. https://doi.org/10.1186/s12986-016-0080-3
Anand, A. V., Divya, N., & Kotti, P. P. (2015). An updated review of Terminalia catappa. Pharmacognosy Reviews, 9(18), 93-98. https://doi.org/10.4103/0973-7847.162103
Avula, B., Wang, Y. H., Isaac, G., Yuk, J., Wrona, M., Yu, K., & Khan, I. A. (2017). Metabolic profiling of hoodia, chamomile, Terminalia species and evaluation of commercial preparations using ultrahigh-performance liquid chromatography quadrupole-time-of-flight mass spectrometry. Planta Medica, 83(16), 1297-1308. https://doi.org/10.1055/s-0043-109239
Belsito, D., Bickers, D., Bruze, M., Calow, P., Dagli, M. L., Fryer, A. D., Greim, H., Miyachi, Y., Saurat, J. H., & Sipes, I. G. (2011). A toxicological and dermatological assessment of macrocyclic lactone and lactide derivatives when used as fragrance ingredients. Food and Chemical Toxicology, 49(Supplement 2), S219–S241. https://doi.org/10.1016/j.fct.2011.07.052
Bhuiyan, M., Begum, J., & Anwar, M. (2008). Essential oils of leaves and rhizomes of Kaempferia galanga Linn. Chittagong University Journal of Biological Sciences, 3(1 & 2), 65–76. https://doi.org/10.3329/cujbs.v3i1.13407
Bouazzi, S., El Mokni, R., Nakbi, H., Dhaouadi, H., Joshi, R. K., & Hammami, S. (2020). Chemical composition and antioxidant activity of essential oils and hexane extract of Onopordum arenarium from Tunisia. Journal of Chromatographic Science, 58(4), 287-293. https://doi.org/10.1093/chromsci/bmz113
Bresciani, L., Favari, C., Calani, L., Francinelli, V., Riva, A., Petrangolini, G., Allegrini, P., Mena, P., & Del Rio, D. (2020). The effect of formulation of curcuminoids on their metabolism by human colonic microbiota. Molecules, 25(4), 940. https://doi.org/10.3390/molecules25040940
Buiarelli, F., Coccioli, F., Merolle, M., Jasionowska, R., & Terracciano, A. (2010). Identification of hydroxycinnamic acid–tartaric acid esters in wine by HPLC–tandem mass spectrometry. Food Chemistry, 123(3), 827-833. https://doi.org/10.1016/j.foodchem.2010.05.017
Bulló, M., Lamuela- Raventós, R., & Salas-Salvadó, J. (2011). Mediterranean diet and oxidation: Nuts and olive oil as important sources of fat and antioxidants. Current Topics in Medicinal Chemistry, 11(14), 1797-1810. https://doi.org/10.2174/156802611796235062
Buzgaia, N., Awin, T., Elabbar, F., Abdusalam, K., Lee, S. Y., Rukayadi, Y., Abas, F., & Shaari, K. (2020). Antibacterial activity of Arbutus pavarii Pamp against methicillin-resistant Staphylococcus aureus (MRSA) and UHPLC-MS/MS profile of the bioactive fraction. Plants, 9(11), 1539. https://doi.org/10.3390/plants9111539
Chen, G., Li, X., Saleri, F., & Guo, M. (2016). Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules, 21(10), 1275. https://doi.org/10.3390/molecules21101275
Cheynier, V. (2012). Phenolic compounds: From plants to foods. Phytochemistry Reviews, 11(2), 153-177. https://doi.org/10.1007/s11101-012-9242-8
Christenhusz, M. J., & Byng, J. W. (2016). The number of known plants species in the world and its annual increase. Phytotaxa, 261(3), 201-217. https://doi.org/10.11646/phytotaxa.261.3.1
Cock, I. E. (2015). The medicinal properties and phytochemistry of plants of the genus Terminalia (Combretaceae). Inflammopharmacology, 23(5), 203-229. https://doi.org/10.1007/s10787-015-0246-z
Das, G., Kim, D. Y., Fan, C., Gutiérrez-Grijalva, E. P., Heredia, J. B., Nissapatorn, V., Mitsuwan, W., Pereira, M. L., Nawaz, M., Siyadatpanah, A., Norouzi, R., Sawicka, B., Shin, H. S., & Patra, J. K. (2020). Plants of the genus Terminalia: An insight on its biological potentials, pre-clinical and clinical studies. Frontiers in Pharmacology, 11, 561248. https://doi.org/10.3389/fphar.2020.561248
Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85(6), 1629-1642. https://doi.org/10.1007/s00253-009-2355-3
Deseo, M. A., Elkins, A., Rochfort, S., & Kitchen, B. (2020). Antioxidant activity and polyphenol composition of sugarcane molasses extract. Food Chemistry, 314, 126180. https://doi.org/10.1016/j.foodchem.2020.126180
Famiani, F., Battistelli, A., Moscatello, S., Cruz-Castillo, J. G., & Walker, R. P. (2015). The organic acids that are accumulated in the flesh of fruits: Occurrence, metabolism and factors affecting their contents-a review. Revista Chapingo Serie Horticultura, 21(2), 97-128. https://doi.org/10.5154/r.rchsh.2015.01.004
Fathoni, A., Saepudin, E., Cahyana, A. H., Rahayu, D. U. C., & Haib, J. (2017). Identification of nonvolatile compounds in clove (Syzygium aromaticum) from Manado. In AIP Conference Proceedings (Vol. 1862, No. 1, p. 030079). AIP Publishing LLC. https://doi.org/10.1063/1.4991183
Flores, P., Hellín, P., & Fenoll, J. (2012). Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry. Food Chemistry, 132(2), 1049-1054. https://doi.org/10.1016/j.foodchem.2011.10.064
Fracassetti, D., Costa, C., Moulay, L., & Tomás-Barberán, F. A. (2013). Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chemistry, 139(1-4), 578-588. https://doi.org/10.1016/j.foodchem.2013.01.121
Ganeshpurkar, A., & Saluja, A. K. (2017). The pharmacological potential of rutin. Saudi Pharmaceutical Journal, 25(2), 149-164. https://doi.org/10.1016/j.jsps.2016.04.025
Ghirardello, D., Prosperini, S., Zeppa, G., & Gerbi, V., (2010). Phenolic acid profile and antioxidant capacity of hazelnut (Corylus avellana L.) kernels in different solvent systems. Journal of Food and Nutrition Research, 49(4), 195-205.
Gowda, S. G. B., Fuda, H., Tsukui, T., Chiba, H., & Hui, S. P. (2020). Discovery of eicosapentaenoic acid esters of hydroxy fatty acids as potent Nrf2 activators. Antioxidants, 9(5), 397. https://doi.org/10.3390/antiox9050397
Gris, E. F., Mattivi, F., Ferreira, E. A., Vrhovsek, U., Pedrosa, R. C., & Bordignon-Luiz, M. T. (2013). Phenolic profile and effect of regular consumption of Brazilian red wines on in vivo antioxidant activity. Journal of Food Composition and Analysis, 31(1), 31-40. https://doi.org/10.1016/j.jfca.2013.03.002
Howes, M. J. R. (2018). Phytochemicals as anti-inflammatory nutraceuticals and phytopharmaceuticals. In Immunity and inflammation in health and disease (pp. 363-388). Academic Press. https://doi.org/10.1016/B978-0-12-805417-8.00028-7
Jiang, H., Somogyi, Á., Jacobsen, N. E., Timmermann, B. N., & Gang, D. R. (2006). Analysis of curcuminoids by positive and negative electrospray ionization and tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 20(6), 1001-1012. https://doi.org/10.1002/rcm.2401
Kalita, S., Khandelwal, S., Madan, J., Pandya, H., Sesikeran, B., & Krishnaswamy, K. (2018). Almonds and cardiovascular health: A review. Nutrients, 10(4), 468. https://doi.org/10.3390/nu10040468
Karimi, E., Jaafar, H. Z., Ghasemzadeh, A., & Ebrahimi, M. (2015). Fatty acid composition, antioxidant and antibacterial properties of the microwave aqueous extract of three varieties of Labisia pumila Benth. Biological Research, 48(1), 9. https://doi.org/10.1186/0717-6287-48-9
Kinoshita, S., Inoue, Y., Nakama, S., Ichiba, T., & Aniya, Y. (2007). Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin. Phytomedicine, 14(11), 755-762. https://doi.org/10.1016/j.phymed.2006.12.012
Kumar, N., & Goel, N. (2019). Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports, 24, e00370. https://doi.org/10.1016/j.btre.2019.e00370
Kumar, S., Chandra, P., Bajpai, V., Singh, A., Srivastava, M., Mishra, D. K., & Kumar, B. (2015). Rapid qualitative and quantitative analysis of bioactive compounds from Phyllanthus amarus using LC/MS/MS techniques. Industrial Crops and Products, 69, 143-152. https://doi.org/10.1016/j.indcrop.2015.02.012
Kumar, S., Singh, A., & Kumar, B. (2017). Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. Journal of Pharmaceutical Analysis, 7(4), 214-222. https://doi.org/10.1016/j.jpha.2017.01.005
Larrosa, M., García-Conesa, M. T., Espín, J. C., & Tomás-Barberán, F. A. (2010). Ellagitannins, ellagic acid and vascular health. Molecular Aspects of Medicine, 31(6), 513-539. https://doi.org/10.1016/j.mam.2010.09.005
Li, X., Deng, Y., Zheng, Z., Huang, W., Chen, L., Tong, Q., & Ming, Y. (2018). Corilagin, a promising medicinal herbal agent. Biomedicine and Pharmacotherapy, 99, 43-50. https://doi.org/10.1016/j.biopha.2018.01.030
Liebelt, D. J., Jordan, J. T., & Doherty, C. J. (2019). Only a matter of time: The impact of daily and seasonal rhythms on phytochemicals. Phytochemistry Reviews, 18(6), 1409-1433. https://doi.org/10.1007/s11101-019-09617-z
Liu, Q., Tang, G. Y., Zhao, C. N., Gan, R. Y., & Li, H. B. (2019). Antioxidant activities, phenolic profiles, and organic acid contents of fruit vinegars. Antioxidants, 8(4), 78. https://doi.org/10.3390/antiox8040078
Maity, S., Chatterjee, S., Variyar, P. S., Sharma, A., Adhikari, S., & Mazumder, S. (2013). Evaluation of antioxidant activity and characterization of phenolic constituents of Phyllanthus amarus root. Journal of Agricultural and Food Chemistry, 61(14), 3443-3450. https://doi.org/10.1021/jf3046686
Mena, P., Calani, L., Dall’Asta, C., Galaverna, G., García-Viguera, C., Bruni, R., Crozier, A., & Del Rio, D. (2012). Rapid and comprehensive evaluation of (poly) phenolic compounds in pomegranate (Punica granatum L.) juice by UHPLC-MSn. Molecules, 17(12), 14821-14840. https://doi.org/10.3390/molecules171214821
Mininel, F. J., Leonardo Junior, C. S., Espanha, L. G., Resende, F. A., Varanda, E. A., Leite, C. Q. F., Vilegas, W., & Dos Santos, L. C. (2014). Characterization and quantification of compounds in the hydroalcoholic extract of the leaves from Terminalia catappa Linn. (Combretaceae) and their mutagenic activity. Evidence-Based Complementary and Alternative Medicine, 2014, 676902. https://doi.org/10.1155/2014/676902
Mozetič, B., Tomažič, I., Škvarč, A., & Trebše, P. (2006). Determination of polyphenols in white grape berries cv. Rebula. Acta Chimica Slovenica, 53, 58-64.
Mohamad, O. A., Li, L., Ma, J. B., Hatab, S., Xu, L., Guo, J. W., Rasulov, B. A., Liu, Y. H., Hedlund, B. P., & Li, W. J. (2018). Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Frontiers in Microbiology, 9, 924. https://doi.org/10.3389/fmicb.2018.00924
National Board Parks. (2015). Coney Island Park news. NParks.
Noorhosseini, S. A., Fallahi, E., & Damalas, C. A. (2020). Promoting cultivation of medicinal and aromatic plants for natural resource management and livelihood enhancement in Iran. Environment, Development and Sustainability, 22, 4007-4024. https://doi.org/10.1007/s10668-019-00368-7
Nuengchamnong, N., & Ingkaninan, K. (2017). An on-line LC-MS/DPPH approach towards the quality control of antioxidative ingredients in Sahastara. Songklanakarin Journal of Science and Technology, 39(1), 123. https://doi.org/10.14456/sjst-psu.2017.14
Otłowska, O., Ślebioda, M., Kot-Wasik, A., Karczewski, J., & Śliwka-Kaszyńska, M. (2018). Chromatographic and spectroscopic identification and recognition of natural dyes, uncommon dyestuff components, and mordants: Case study of a 16th century carpet with chintamani motifs. Molecules, 23(2), 339. https://doi.org/10.3390/molecules23020339
Oniszczuk, T., Widelska, G., Oniszczuk, A., Kasprzak, K., Wójtowicz, A., Olech, M., Nowak, R., Wojtunik-Kulesza, K., Jóźwiak, G., & Waksmundzka-Hajnos, M. (2019). Influence of production parameters on the content of polyphenolic compounds in extruded porridge enriched with chokeberry fruit (Aronia melanocarpa (Michx.) Elliott). Open Chemistry, 17(1), 166-176. https://doi.org/10.1515/chem-2019-0019
Opara, E. I., & Chohan, M. (2014). Culinary herbs and spices: Their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. International Journal of Molecular Sciences, 15(10), 19183-19202. https://doi.org/10.3390/ijms151019183
Oyeleye, S. I., Adebayo, A. A., Ogunsuyi, O. B., Dada, F. A., & Oboh, G. (2018). Phenolic profile and enzyme inhibitory activities of almond (Terminalia catappa) leaf and stem bark. International Journal of Food Properties, 20(sup3), S2810-S2821. https://doi.org/10.1080/10942912.2017.1375945
Pati, S., Crupi, P., Benucci, I., Antonacci, D., Di Luccia, A., & Esti, M. (2014). HPLC-DAD–MS/MS characterization of phenolic compounds in white wine stored without added sulfite. Food Research International, 66, 207-215. https://doi.org/10.1016/j.foodres.2014.09.017
Patel, K. N., Patel, J. K., Patel, M. P., Rajput, G. C., & Patel, H. A. (2010). Introduction to hyphenated techniques and their applications in pharmacy. Pharmaceutical Methods, 1(1), 2-13. https://doi.org/10.4103/2229-4708.72222
Perez, E. R., Knapp, J. A., Horn, C. K., Stillman, S. L., Evans, J. E., & Arfsten, D. P. (2016). Comparison of LC–MS-MS and GC–MS analysis of benzodiazepine compounds included in the drug demand reduction urinalysis program. Journal of Analytical Toxicology, 40(3), 201-207. https://doi.org/10.1093/jat/bkv140
Penniston, K. L., Nakada, S. Y., Holmes, R. P., & Assimos, D. G. (2008). Quantitative assessment of citric acid in lemon juice, lime juice, and commercially-available fruit juice products. Journal of Endourology, 22(3), 567-570. https://doi.org/10.1089/end.2007.0304
Pfundstein, B., El Desouky, S. K., Hull, W. E., Haubner, R., Erben, G., & Owen, R. W. (2010). Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): Characterization, quantitation and determination of antioxidant capacities. Phytochemistry, 71(10), 1132-1148. https://doi.org/10.1016/j.phytochem.2010.03.018
Pinto, M. E., Araújo, S. G., Morais, M. I., Sá, N. P., Lima, C. M., Rosa, C. A., Siqueira, E. P., Johann, S., & Lima, L. A. R. S. (2017). Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. Anais da Academia Brasileira de Ciências, 89(3), 1671-1681. https://doi.org/10.1590/0001-3765201720160908
Regueiro, J., Sánchez-González, C., Vallverdú-Queralt, A., Simal-Gándara, J., Lamuela-Raventós, R., & Izquierdo-Pulido, M. (2014). Comprehensive identification of walnut polyphenols by liquid chromatography coupled to linear ion trap – Orbitrap mass spectrometry. Food Chemistry, 152, 340-348. https://doi.org/10.1016/j.foodchem.2013.11.158
Pinheiro, A. J. M. C. R., Gonçalves, J. S., Dourado, Á. W. A., de Sousa, E. M., Brito, N. M., Silva, L. K., Batista, M. C. A., de Sá, J. C., Monteiro, C. R. A. V., Fernandes, E. S., Monteiro-Neto, V., Campbell, L. A., Zago, P. M. W., & Lima-Neto, L. G. (2018). Punica granatum L. leaf extract attenuates lung inflammation in mice with acute lung injury. Journal of Immunology Research, 2018, 6879183. https://doi.org/10.1155/2018/6879183
Sandín-España, P., Mateo-Miranda, M., López-Goti, C., De Cal, A., & Alonso-Prados, J. L. (2016). Development of a rapid and direct method for the determination of organic acids in peach fruit using LC–ESI-MS. Food Chemistry, 192, 268-273. https://doi.org/10.1016/j.foodchem.2015.07.012
Santos, S. A., Freire, C. S., Domingues, M. R. M., Silvestre, A. J., & Neto, C. P. (2011). Characterization of phenolic components in polar extracts of Eucalyptus globulus Labill. bark by high-performance liquid chromatography–mass spectrometry. Journal of Agricultural and Food Chemistry, 59(17), 9386-9393. https://doi.org/10.1021/jf201801q
Sarabhai, S., Sharma, P., & Capalash, N. (2013). Ellagic acid derivatives from Terminalia chebula Retz. downregulate the expression of quorum sensing genes to attenuate Pseudomonas aeruginosa PAO1 virulence. PLOS One, 8(1), e53441. https://doi.org/10.1371/journal.pone.0053441
Shewamene, Z., Dune, T., & Smith, C. A. (2020). Use of traditional and complementary medicine for maternal health and wellbeing by African migrant women in Australia: A mixed method study. BMC Complementary Medicine and Therapies, 20(1), 1-12. https://doi.org/10.1186/s12906-020-2852-6
Siew, Ng., Lasekan, O., Syed, M. K., Hussain, N. R. (2015). Physicochemical properties of Malaysian-grown tropical almond nuts (Terminalia catappa). Journal of Food Science and Technology, 52, 6623–6630. https://doi.org/10.1007/s13197-015-1737-z
Singh, A., Bajpai, V., Kumar, S., Sharma, K. R. (2016). Profiling of gallic and ellagic acid derivatives in different plant parts of Terminalia arjuna by HPLC-ESI-QTOF-MS/MS. Natural Product Communications, 11(2), 239–244.
Szumiło, J. (2005). Kwas protokatechowy w prewencji nowotworów [Protocatechuic acid in cancer prevention]. Postępy Higieny i Medycyny Doświadczalnej, 59, 608-615.
Tambekar D. H., Jadhav, A. S., & Bahekar, S. S. (2017). Antimicrobial potential of haloalkaliphilic Bacillus thermotolerans from alkaline environment. International Journal of Researches in Biosciences and Agriculture Technology, V(2), 1–5. https://doi.org/10.29369/ijrbat.2017.05.ii.0050
Taofiq, O., González-Paramás, A. M., Barreiro, M. F., & Ferreira, I. C. (2017). Hydroxycinnamic acids and their derivatives: Cosmeceutical significance, challenges and future perspectives, a review. Molecules, 22(2), 281. https://doi.org/10.3390/molecules22020281
Terças, A. G., Monteiro, A. D. S., Moffa, E. B., Dos Santos, J. R., Sousa, E. M. D., Pinto, A. R., Costa, P. C., Borges, A. C., Torres, L., Barros Filho, A. K., Fernandes, E. S. (2017). Phytochemical characterization of Terminalia catappa Linn. extracts and their antifungal activities against Candida spp. Frontiers in Microbiology, 8, 595. https://doi.org/10.3389/fmicb.2017.00595
Tugume, P., & Nyakoojo, C. (2019). Ethno-pharmacological survey of herbal remedies used in the treatment of paediatric diseases in Buhunga parish, Rukungiri District, Uganda. BMC Complementary and Alternative Medicine, 19(1), 1-10. https://doi.org/10.1186/s12906-019-2763-6
Venkatalakshmi, P., Vadivel, V., Brindha, P., (2016). Identification of flavonoids in different parts of Terminalia catappa L. using LC-ESI-MS/MS and investigation of their anticancer effect in EAC cell line model. Journal of Pharmaceutical Science Research, 8(4), 176–183.
Walker, R. P., & Famiani, F. (2018). Organic acids in fruits: Metabolism, functions and contents. Horticultural Reviews, 45, 371-430. https://doi.org/10.1002/9781119431077.ch8
Wang, B. H., & Polya, G. M. (1996). Selective inhibition of cyclic AMP-dependent protein kinase by amphiphilic triterpenoids and related compounds. Phytochemistry, 41(1), 55–63. https://doi.org/10.1016/0031-9422(95)00583-8
Wang, S., Liu, L., Wang, L., Hu, Y., Zhang, W., & Liu, R. (2012). Structural characterization and identification of major constituents in Jitai tablets by high-performance liquid chromatography/diode-array detection coupled with electrospray ionization tandem mass spectrometry. Molecules, 17(9), 10470-10493. https://doi.org/10.3390/molecules170910470
Xiao, J. F., Zhou, B., & Ressom, H. W. (2012). Metabolite identification and quantitation in LC-MS/MS-based metabolomics. TrAC Trends in Analytical Chemistry, 32, 1-14. https://doi.org/10.1016/j.trac.2011.08.009
Yang, J., Qian, D., Jiang, S., Shang, E. X., Guo, J., & Duan, J. A. (2012). Identification of rutin deglycosylated metabolites produced by human intestinal bacteria using UPLC–Q-TOF/MS. Journal of Chromatography B, 898, 95-100. https://doi.org/10.1016/j.jchromb.2012.04.024
Yang, Y., Sun, X., Liu, J., Kang, L., Chen, S., Ma, B., & Guo, B. (2016). Quantitative and qualitative analysis of flavonoids and phenolic acids in snow chrysanthemum (Coreopsis tinctoria Nutt.) by HPLC-DAD and UPLC-ESI-QTOF-MS. Molecules, 21(10), 1307. https://doi.org/10.3390/molecules21101307
Zhang, X. R., Kaunda, J. S., Zhu, H. T., Wang, D., Yang, C. R., & Zhang, Y. J. (2019). The genus Terminalia (Combretaceae): An ethnopharmacological, phytochemical and pharmacological review. Natural Products and Bioprospecting, 9(6), 357-392. https://doi.org/10.1007/s13659-019-00222-3
Zhu, M., Dong, X., & Guo, M. (2015). Phenolic profiling of Duchesnea indica combining macroporous resin chromatography (MRC) with HPLC-ESI-MS/MS and ESI-IT-MS. Molecules, 20(12), 22463-22475. https://doi.org/10.3390/molecules201219859
ISSN 1511-3701
e-ISSN 2231-8542