e-ISSN 2231-8542
ISSN 1511-3701
Sherline, Maharani Dian Permanasari, Dadang Sumardi, Sony Suhandono and Fenny Martha Dwivany
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024
DOI: https://doi.org/10.47836/pjtas.47.3.23
Keywords: 16S rRNA, banana pseudostem, beeswax, metagenomics
Published on: 27 August 2024
Bananas are one of the most popular fruits, and their production generates significant agricultural waste. Banana pseudostems, a by-product of the banana industry, are being investigated as a renewable and biodegradable alternative to synthetic food packaging materials. However, these pseudostems have the potential to harbor harmful bacteria due to their natural fiber composition. Therefore, this study analyzes the effect of beeswax coating on the microbial communities in banana pseudostems. The microbial community is analyzed through a metagenomics approach that targets the 16S rRNA gene of the Saba banana (Musa × paradisiaca) pseudostem. Two experimental conditions were considered: pseudostem with beeswax coating and pseudostem without beeswax coating. The findings indicate that the microbial communities in all samples are primarily composed of the phyla Proteobacteria, Cyanobacteria, and Firmicutes. The dominant species found in uncoated banana pseudostem is Pantoea sp. At-9b, Escherichia coli, Synechococcus sp. JA-3-3-Ab, Pantoea vagans, and Klebsiella pneumoniae. The dominant species found in beeswax-coated banana pseudostem is Synechococcus sp. JA-3-3-Ab, Pseudanabaena sp. PCC 7367, Chroococcidiopsis thermalis, Priestia megaterium, and Ammonifex degensii. The Chao1, Shannon, Simpson, and Equitability indices indicate that the species richness, diversity, and evenness in the uncoated banana pseudostem are higher than in the beeswax-coated banana pseudostem. The degree of similarity between bacterial populations found in uncoated banana pseudostem and beeswax-coated banana pseudostem is around 53.9%.
Acevedo, S. A., Carrillo, A. J. D., Flórez-López, E., & Grande-Tovar, C. D. (2021). Recovery of banana waste-loss from production and processing: A contribution to a circular economy. Molecules, 26(17), 5282. https://doi.org/10.3390/molecules26175282
Anilakumar, K. R., Krishna, K. R. S., Chandramohan, G., Khanum, F., & Bawa, A. S. (2007). Bees wax polyphenols as suppressor of CC1-induced oxidative stress in rats. Indian Journal of Physiology and Pharmacology, 51(4), 361–367.
Asim, N., Badiei, M., & Masita, M. (2022). Recent advances in cellulose based hydrophobic food packaging. Emergent Materials, 5, 703-718. https://doi.org/10.1007/s42247-021-00314-2
Badan Pusat Statistik. (2024). Produksi tanaman buah-buahan 2021-2023 [Fruit crop production 2021-2023]. BPS. https://www.bps.go.id/id/statistics-table/2/NjIjMg==/produksi-tanaman-buah-buahan.html
Beck, D. E., Lane, K. M., Shiel, C. A., & Welke, K. F. (2021). Food spoilage in beeswax impregnated cotton cloth wraps compared to standard storage methods. https://scholarworks.umt.edu/beekeeping/1/
Beltran-Garcia, M. J., Martinez-Rodriguez, A., Olmos-Arriaga, I., Valdez-Salas, B., Chavez-Castrillon, Y. Y., Mascio, P. D., & White, J. F. (2021). Probiotic endophytes for more sustainable banana production. Microorganisms, 9(9), 1805. https://doi.org/10.3390/microorganisms9091805
Borkar, S. G., & Ajayasree, T. S. (2021). Presence of flagellation in plant pathogenic strain of Klebsiella pneumoniae - A new report. Acta Scientific Microbiology, 4(1), 114-117. https://doi.org/10.31080/ASMI.2020.04.0757
Borriss, R. (2020). Bacillus. In N. Amaresan, K. Annapurna, A. Sankaranarayanan, M. S. Kumar, & K. Kumar (Eds.), Beneficial microbes in agro-ecology: Bacteria and fungi (pp. 107-132). Academic Press. https://doi.org/10.1016/B978-0-12-823414-3.00007-1
Bulgarelli, D. Schlaeppi, K., Spaepen, S., van Themaat, E. V. L., & Schulza-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807-838. https://doi.org/10.1146/annurev-arplant-050312-120106
Calle, M. L. (2019). Statistical analysis of metagenomics data. Genomics and Informatics, 17(1), e6. https://doi.org/10.5808/GI.2019.17.1.e6
Chamberlain, N. R., Mehrtens, B. G., Xiong, Z., Kapral, F. A., Boardman, J. L., & Rearick, J. I. (1991). Correlation of carotenoid production, decreased membrane fluidity, and resistance to oleic acid killing in Staphylococcus aureus 18Z. Infection and Immunity, 59(12), 4332–4337. https://doi.org/10.1128/iai.59.12.4332-4337.1991
Cunningham, D. J. & Leber, A. (2018). Enterobacter, Cronobacter, and Pantoea species. In S. S. Long, M. Fischer, & C. G. Prober (Eds.), Principles and practice of pediatric infectious diseases (5th ed., pp. 824-827). Elsevier. https://doi.org/10.1016/B978-0-323-40181-4.00140-7
Cushnie, T. P. T., & Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International Journal of Antimicrobial Agents, 38(2), 99–107. https://doi.org/10.1016/j.ijantimicag.2011.02.014
Daglia, M. (2012). Polyphenols as antimicrobial agents. Current Opinion in Biotechnology, 23(2), 174–181. https://doi.org/10.1016/j.copbio.2011.08.007
De Coster, W., D’Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics, 34(15), 2666-2669. https://doi.org/10.1093/bioinformatics/bty149
Desbois, A. P., & Smith, V. J. (2010). Antibacterial free fatty acids: Activities, mechanisms of action and biotechnological potential. Applied Microbiology and Biotechnology, 85, 1629–1642. https://doi.org/10.1007/s00253-009-2355-3
Dwivany, F. M., Hermawaty, D., & Esyanti, R. R. (2016). ‘Raja Bulu’ banana MaACS1 and MaACO1 gene expression during postharvest storage. Acta Horticulturae, 1120, 111–114. https://doi.org/10.17660/ActaHortic.2016.1120.16
Dwivany, F. M., Sukriandi, N., Meitha, K., & Brotosudarmo, T. H. P. (2021). In silico characterization of the structure of genes and proteins related to β-carotene degradation in Musa acuminata ‘DH-Pahang’ and Musa balbisiana ‘Pisang Klutuk Wulung’. Pertanika Journal of Tropical Agricultural Science, 44(2), 429–447. https://doi.org/10.47836/pjtas.44.2.10
Dwivany, F., Esyanti, R. R., Robertlee, J., Paramaputra, I. C., Permatadewi, R. K., Tambun, D. H., Handayani, R. U., Pratiwi, A. ‘S., & Zaskia, H. (2014). Environment effect on fruit ripening related gene to develop a new postharvest technology. In AIP Conference Proceedings (Vol. 1589, No. 1, pp. 285–287). AIP Publishing. https://doi.org/10.1063/1.4868801
Elagamey, E., Abdellatef, M. A. E., & Flefel, H. E. (2023). Cyanobacteria: A futuristic effective tool in sustainable agriculture. In A. Tiwari (Ed.), Cyanobacteria – Recent advances and new perspectives IntechOpen. https://doi.org/10.5772/intechopen.109829
Fratini, F., Cilia, G., Turchi, B., & Felicioli, A. (2016). Beeswax: A minireview of its antimicrobial activity and its application in medicine. Asian Pacific Journal of Tropical Medicine, 9(9), 819-843. https://doi.org/10.1016/j.apjtm.2016.07.003
Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: Surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8, 15–25. https://doi.org/10.1038/nrmicro2259
Jnani, D. & Ray, S. D. (2024). Eschericia coli. In P. Wexler (Ed.), Encyclopedia of toxicology (4th ed., pp. 357-367). Academic Press. https://doi.org/10.1016/B978-0-12-824315-2.00190-1
Kaewkla, O. & Franco, C. M. M. (2013) Rational approaches to improving the isolation of endophytic Actinobacteria from Australian native trees. Microbial Ecology, 65, 384–393. https://doi.org/10.1007/s00248-012-0113-z
Karmawan, L. U., Suhandono, S., & Dwivany, F. M. (2009). Isolation of MA-ACS gene family and expression study of MA-ACS1 gene in Musa acuminata cultivar Pisang Ambon Lumut. HAYATI Journal of Biosciences, 16(1), 35-39. https://doi.org/10.4308/hjb.16.1.35
Khairiya, F., Dwivany, F. M., Suhandono, S., Hessel, S. S., Zainuddin, I. M., & Tallei, T. E. (2023). In silico comparative analysis of gene and protein of plant lectins. Pertanika Journal of Tropical Agricultural Science, 46(3), 815-838. https://doi.org/10.47836/pjtas.46.3.06
Kim, B.-R., Shin, J., Guevarra, R. B., Lee, J. H., Kim, D. W., Seol, K.-H., Lee, J.-H., Kim, H. B., & Isaacson, R. E. (2017). Deciphering diversity indices for a better understanding of microbial communities. Journal of Microbiology and Biotechnology, 27(12), 2089-2093. https://doi.org/10.4014/jmb.1709.09027
Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: Rapid and sensitive classification of metagenomic sequences. Genome Research, 26, 1721–1729. https://doi.org/10.1101/gr.210641.116
Kollmen, J. & Strieth, D. (2022). The beneficial effects of cyanobacterial co-culture on plant growth. Life, 12(2), 223. https://doi.org/10.3390/life12020223
Krebs, C. J. (1989). Ecological methodology. HarperCollins Publisher.
Padam, B. S., Tin, H. S., Chye, F. Y., & Abdullah, M. I. (2014). Banana by-products: An under-utilized renewable food biomass with great potential. Journal of Food Science and Technology, 51, 3527–3545. https://doi.org/10.1007/s13197-012-0861-2
Peng, Z., Guan, J., Mou, D., Zou, X., Wang, B., Jin, J., Zhang, X., & Luo, H. (2022). Analysis of bacterial community composition and ecological function during soft rot process in pitaya (Hylocereus spp.) stems. Journal of Chemistry, 2022, 9169433. https://doi.org/10.1155/2022/9169433
Pinto, C. T., Pankowski, J. A., & Nano, F. E. (2017). The anti-microbial effect of food wrap containing beeswax products. Journal of Microbiology, Biotechnology, and Food Sciences, 7(2), 145-148. https://doi.org/10.15414/jmbfs.2017.7.2.145-148
Rizzatti, G., Lopetuso, L. R., Gibiino, G., Binda, C., & Gasbarrini, A. (2017). Proteobacteria: A common factor in human diseases. BioMed Research International, 2017, 9351507. https://doi.org/10.1155/2017/9351507
Rossmann, B., Müller, H., Smalla, K., Mpiira, S., Tumuhairwe, J. B., Staver, C., & Berg, G. (2012). Banana-associated microbial communities in Uganda are highly diverse but dominated by Enterobacteriaceae. Journal of Applied and Environmental Microbiology, 78(14), 4933-4941. https://doi.org/10.1128/AEM.00772-12
Sagar, R. & Sharma, G. P. (2012). Measurement of alpha diversity using Simpson index (1/λ): The jeopardy. Environmental Skeptics and Critics, 1(1), 23-24.
Saraiva, A. B., Pacheco, E. B. A. V., Visconte, L. L. Y., Bispo, E. P., Escócio, V. A., de Sousa, A. M. F., Soares, A. G., Junior, M. F., do Carmo Motta, L. C., & de Cunha Brito, G. F. (2012). Potentials for utilization of post-fiber extraction waste from tropical fruit production in Brazil – The example of banana pseudo-stem. International Journal of Environment and Bioenergy, 4(2), 101-111.
Sharmin, F., Wakelin, S., Huygens, F., & Hargreaves, M. (2013). Firmicutes dominate the bacterial taxa within sugar-cane processing plants. Scientific Reports, 3, 3107. https://doi.org/10.1038/srep03107
Simpson, E. H. (1949). Measurement of diversity. Nature, 163, 688. https://doi.org/10.1038/163688a0
Szulc, J., Machnowski, W., Kowalska, S., Jachowicz, A., Ruman, T., Steglińska, A., & Gutarowska, B. (2020). Beeswax-modified textiles: Method of preparation and assessment of antimicrobial properties. Polymers, 12(2), 344. https://doi.org/10.3390/polym12020344
Thukral, A. K. (2017). A review on measurement of alpha diversity in biology. Agricultural Research Journal, 54(1), 1-10. https://doi.org/10.5958/2395-146X.2017.00001.1
Trevisani, M., Cecchini, M., Siconolfi, D., Mancusi, R., & Rosmini, R. (2017). Effects of beeswax coating on the oxidative stability of long-ripened Italian salami. Journal of Food Quality, 2017, 8089135. https://doi.org/10.1155/2017/8089135
Ulfah, M., Fajri, S. N., Nasir, M., Hamsah, K., & Purnawan, S. (2019). Diversity, evenness and dominance index reef fish in Krueng Raya Water, Aceh Besar. In IOP Conference Series: Earth and Environmental Science (Vol. 348, No. 1, p. 012074). IOP Publishing. https://doi.org/10.1088/1755-1315/348/1/012074
Wahyuningsih, E., Faridah, E., Budiadi., & Syahbudin, A. (2019). Komposisi dan keanekaragaman tumbuhan pada habitat ketak (Lygodium circinatum (Burm.(Sw.) di Pulau Lombok, Nusa Tenggara Barat [Composition and plant diversity in the habitat of Lygodium circinatum (Burm.(Sw.) on Lombok Island, West Nusa Tenggara]. Jurnal Hutan Tropis, 7(1), 92-105.
Wick, R. R., Judd, L. M., & Holt, K. E. (2019). Performance of neural network basecalling tools for Oxford Nanopore sequencing. Genome Biology, 20, 129. https://doi.org/10.1186/s13059-019-1727-y
Willis, A. D. (2019). Rarefaction, alpha diversity, and statistics. Frontiers in Microbiology, 10, 2407. https://doi.org/10.3389/fmicb.2019.02407
Yanuartono., Nururrozi, A., Indarjulianto, S., Ramandani, D., & Purnamaningsih, H. (2020). Review: Potensi limbah tanaman pisang sebagai pakan ternak ruminansia [Review: Potential of banana plant waste as ruminant feed]. Jurnal Ilmu Ternak, 20(1), 56-68. https://doi.org/10.24198/jit.v20i1.26358
Yoga Milani, M. D., Samarawickrama, D. S., Perera, P. S. D., Wilson Wijeratnam, R. S., & Hewajulige, I. G. N. (2020). Eco friendly packaging material from banana pseudo stem for transportation of fruits and vegetables. Acta Horticulturae, 1278, 59-64. https://doi.org/10.17660/ActaHortic.2020.1278.9
Yoon, B. K., Jackman, J. A., Valle-González, E. R., & Cho, N.-J. (2018). Antibacterial free fatty acids and monoglycerides: Biological activities, experimental testing, and therapeutic applications. International Journal of Molecular Sciences, 19(4), 1114. https://doi.org/10.3390/ijms19041114
Zhang, Y., Tu, C., Lin, H., Hu, Y., Jia, J., Shui, S., Wang, J., Hu, Y., & Zhang, B. (2023). Changes in physicochemical characteristics and microbial diversity of traditional fermented vinasse hairtail. Fermentation, 9(2), 173. https://doi.org/10.3390/fermentation9020173
ISSN 1511-3701
e-ISSN 2231-8542