PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (6) Oct. 2023 / JST-4016-2022

 

Response Surface Methodology: A Versatile Tool for the Optimization of Particle Sizes of Cellulose Beads

Kimberly Wei Wei Tay, Suk Fun Chin, Mohd Effendi Wasli and Zaki Musa

Pertanika Journal of Science & Technology, Volume 31, Issue 6, October 2023

DOI: https://doi.org/10.47836/pjst.31.6.10

Keywords: Cellulose beads, controlled particle sizes, microbeads, nanobeads, response surface methodology

Published on: 12 October 2023

Synthesis parameters are of utmost importance for controlling the particle sizes of cellulose beads. This study aims to investigate the effects of synthesis parameters e.g., stirring speed (250–1250 rpm), surfactant concentrations (0.5–6.0% w/v), cellulose concentrations (1–5% w/v), and reaction temperature (30-100°C) on the particle sizes for micron-sized cellulose beads (µCBs) as well as other parameters e.g. the volume (1.0 mL) and concentration (0.1–1.0% w/v) of cellulose for nanosized (nCBs) cellulose beads using the response surface methodology (RSM). A total of 27 runs were conducted applying RSM based on the central composite design approach with Minitab-19. Cellulose concentrations were shown to have the most significant effect on both µCBs and nCBs. Under optimized conditions, the minimum and maximum mean particle size of µCBs that could be achieved were 15.3 µm and 91 µm, respectively. The predicted mean particle size for nCBs was obtained at 0.01 nm as the smallest and 200 nm as the biggest particle size under the optimum conditions. This study envisages that RSM and experiments for targeted applications such as biomedicine and agriculture could optimize the particle sizes of cellulose beads.

  • Akbari, S.,& Nour, A. H. (2018). Emulsion types, stability mechanisms and rheology: A review. International Journal of Innovative Research and Scientific Studies, 1(1), 11-17. https://doi.org/10.53894/ijirss.v1i1.4

  • Alazab, A. A, & Saleh, T. A. (2022). Magnetic hydrophobic cellulose-modified polyurethane filter for efficient oil-water separation in a complex water environment. Journal of Water Process Engineering, 50, Article 103125. https://doi.org/10.1016/j.jwpe.2022.103125

  • Allouss, D., Essamlali, Y., Amadine, O., Chakir, A., & Zahouily, M. (2019). Response surface methodology for optimization of methylene blue adsorption onto carboxymethyl cellulose-based hydrogel beads: Adsorption kinetics, isotherm, thermodynamics and reusability studies. RSC Advances, 9(65), 37858-37869. https://doi.org/10.1039/c9ra06450h

  • Alnaief, M., Alzaitoun, M. A., García-González, C. A., & Smirnova, I. (2011). Preparation of biodegradable nanoporous microspherical aerogel based on alginate. Carbohydrate Polymers, 84(3), 1011-1018. https://doi.org/10.1016/j.carbpol.2010.12.060

  • An, H. J., Park, H., & Cho, B. U. (2021). Effect of temperature of tetraethylammonium hydroxide/urea/cellulose solution on surface tension and cellulose bead size. Journal of Korea Technical Association of the Pulp and Paper Industry, 53(6), 69-76. https://doi.org/10.7584/jktappi.2021.12.53.6.69

  • Balart, R., Garcia-Garcia, D., Fombuena, V., Quiles-Carrillo, L., & Arrieta, M. P. (2021). Biopolymers from natural resources. Polymers, 13(15), Article 2532. https://doi.org/10.3390/polym13152532

  • Bhardwaj, P., Kamil, M., & Panda, M. (2018). Surfactant-polymer interaction: effect of hydroxypropylmethyl cellulose on the surface and solution properties of gemini surfactants. Colloid and Polymer Science, 296(11), 1879-1889. https://doi.org/10.1007/s00396-018-4409-5

  • Califano, D., Patenall, B. L., Kadowaki, M. A. S., Mattia, D., Scott, J. L., & Edler, K. J. (2021). Enzyme-functionalized cellulose beads as a promising antimicrobial material. Biomacromolecules, 22(2), 754-762. https://doi.org/10.1021/acs.biomac.0c01536

  • Carvalho, J. P. F., Silva, A. C. Q., Silvestre, A. J. D., Freire, C. S. R., & Vilela, C. (2021). Spherical cellulose micro and nanoparticles: A review of recent developments and applications. Nanomaterials, 11(10), Article 2744. https://doi.org/10.3390/nano11102744

  • Chin, S. F., Jimmy, F. B., & Pang, S. C. (2016). Fabrication of cellulose aerogel from sugarcane bagasse as drug delivery carriers. Journal of Physical Science, 27(3), 159-168. https://doi.org/10.21315/jps2016.27.3.10

  • Chin, S. F., Azman, A., & Pang, S. C. (2014). Size controlled synthesis of starch nanoparticles by a microemulsion method. Journal of Nanomaterials, 2014, Article 763736. https://doi.org/10.1155/2014/763736

  • Chin, S. F., Jimmy, F. B., & Pang, S. C. (2018). Size controlled fabrication of cellulose nanoparticles for drug delivery applications. Journal of Drug Delivery Science and Technology, 43, 262-266. https://doi.org/10.1016/j.jddst.2017.10.021

  • Chin, S. F., Jong, S. J., & Yeo, Y. J. (2021). Optimization of cellulose-based hydrogel synthesis using response surface methodology. Biointerface Research in Applied Chemistry, 12(6), 7136-7146. https://doi.org/10.33263/BRIAC126.71367146

  • Chin, S. F., Yazid, S. N. A. M., & Pang, S. C. (2014). Preparation and characterization of starch nanoparticles for controlled release of curcumin. International Journal of Polymer Science, 2014, Article 340121. https://doi.org/10.1155/2014/340121

  • Ching, Y. C., Gunathilake, T. M. S. U., Chuah, C. H., Ching, K. Y., Singh, R., & Liou, N. S. (2019). Curcumin/tween 20-incorporated cellulose nanoparticles with enhanced curcumin solubility for nano-drug delivery: Characterization and in vitro evaluation. Cellulose, 26(9), 5467-5481. https://doi.org/10.1007/s10570-019-02445-6

  • Conforti, C., Giuffrida, R., Fadda, S., Fai, A., Romita, P., Zalaudek, I., & Dianzani, C. (2021). Topical dermocosmetics and acne vulgaris. Dermatologic Therapy, 34(1), Article e14436. https://doi.org/10.1111/dth.14436

  • Costa, C., Medronho, B., Filipe, A., Mira, I., Lindman, B., Edlund, H., & Norgren, M. (2019). Emulsion formation and stabilization by biomolecules: The leading role of cellulose. Polymers, 11(10), Article 1570. https://doi.org/10.3390/polym11101570

  • Culica, M. E., Chibac-Scutaru, A. L., Mohan, T., & Coseri, S. (2021). Cellulose-based biogenic supports, remarkably friendly biomaterials for proteins and biomolecules. Biosensors and Bioelectronics, 182, Article 113170. https://doi.org/10.1016/j.bios.2021.113170

  • Druel, L., Niemeyer, P., Milow, B., & Budtova, T. (2018). Rheology of cellulose-[DBNH][CO2Et] solutions and shaping into aerogel beads. Green Chemistry, 20(17), 3993-4002. https://doi.org/10.1039/c8gc01189c

  • Du, K., Li, S., Zhao, L., Qiao, L., Ai, H., & Liu, X. (2018). One-step growth of porous cellulose beads directly on bamboo fibers via oxidation-derived method in aqueous phase and their potential for heavy metal ions adsorption. ACS Sustainable Chemistry and Engineering, 6(12), 17068-17075. https://doi.org/10.1021/acssuschemeng.8b04433

  • Essawy, H. A., Ghazy, M. B. M., El-Hai, F. A., & Mohamed, M. F. (2016). Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. International Journal of Biological Macromolecules, 89, 144-151. https://doi.org/10.1016/j.ijbiomac.2016.04.071

  • Ethayaraja, M., Ravikumar, C., Muthukumaran, D., Dutta, K., & Bandyopadhyaya, R. (2007). CdS−ZnS core−shell nanoparticle formation: Experiment, mechanism, and simulation. The Journal of Physical Chemistry C, 111(8), 3246-3252. https://doi.org/10.1021/jp066066j

  • França, D., de Barros, J. R. S., & Faez, R. (2021). Spray-dried cellulose nanofibrils microparticles as a vehicle for enhanced efficiency fertilizers. Cellulose, 28(3), 1571-1585. https://doi.org/10.1007/s10570-020-03609-5

  • Gericke, M., Trygg, J., & Fardim, P. (2013). Functional cellulose beads: Preparation, characterization, and applications. Chemical Reviews, 113(7), 4812-4836. https://doi.org/10.1021/cr300242j

  • Gomes, M. H. F., Callaghan, C., Mendes, A. C. S., Edler, K. J., Mattia, D., de Jong van Lier, Q., & de Carvalho, H. W. P. (2022). Cellulose microbeads: Toward the controlled release of nutrients to plants. ACS Agricultural Science & Technology, 2(2), 340-348. https://doi.org/10.1021/acsagscitech.1c00233

  • Guan, H., Li, J., Zhang, B., & Yu, X. (2017). Synthesis, properties, and humidity resistance enhancement of biodegradable cellulose-containing superabsorbent polymer. Journal of Polymers, 2017, Article 3134681. https://doi.org/10.1155/2017/3134681

  • Gülsu, A., & Yüksektepe, E. (2021). Preparation of spherical cellulose nanoparticles from recycled waste cotton for anticancer drug delivery. Chemistry Select, 6(22), 5419-5425. https://doi.org/10.1002/slct.202101683

  • Guo, H., Lei, B., Yu, J., Chen, Y., & Qian, J. (2021). Immobilization of lipase by dialdehyde cellulose crosslinked magnetic nanoparticles. International Journal of Biological Macromolecules, 185, 287-296. https://doi.org/10.1016/j.ijbiomac.2021.06.073

  • Hakim, S. L., Kusumasari, F. C., & Budianto, E. (2020). Optimization of biodegradable PLA/PCL microspheres preparation as controlled drug delivery carrier. Materials Today: Proceedings, 22, 306-313. https://doi.org/10.1016/j.matpr.2019.08.156

  • Hamidon, T. S., Adnan, R., Haafiz, M. K. M., & Hussin, M. H. (2022). Cellulose-based beads for the adsorptive removal of wastewater effluents: A review. Environmental Chemistry Letters, 20(3), 1965-2017. https://doi.org/10.1007/s10311-022-01401-4

  • Harada, N., Nakamura, J., & Uyama, H. (2021). Single-step fabrication and environmental applications of activated carbon-containing porous cellulose beads. Reactive and Functional Polymers, 160, Article 104830. https://doi.org/10.1016/j.reactfunctpolym.2021.104830

  • Ho, B. K., Chin, S. F., & Pang, S. C. (2020). pH-responsive carboxylic cellulose acetate nanoparticles for controlled release of penicillin G. Journal of Science: Advanced Materials and Devices, 5(2), 224-232. https://doi.org/10.1016/j.jsamd.2020.04.002

  • Hu, Z. H., Omer, A. M., Ouyang, X. K., & Yu, D. (2018). Fabrication of carboxylated cellulose nanocrystal/sodium alginate hydrogel beads for adsorption of Pb(II) from aqueous solution. International Journal of Biological Macromolecules, 108, 149-157. https://doi.org/10.1016/j.ijbiomac.2017.11.171

  • Jampi, A. L. W., Chin, S. F., Wasli, M. E., & Chia, C. H. (2021). Preparation of cellulose hydrogel from sago pith waste as a medium for seed germination. Journal of Physical Science, 32(1), 13-26. https://doi.org/10.21315/JPS2021.32.1.2

  • Jancy, S., Shruthy, R., & Preetha, R. (2020). Fabrication of packaging film reinforced with cellulose nanoparticles synthesised from jack fruit non-edible part using response surface methodology. International Journal of Biological Macromolecules, 142, 63-72. https://doi.org/10.1016/j.ijbiomac.2019.09.066

  • Jo, S., Park, S., Oh, Y., Hong, J., Kim, H. J., Kim, K. J., Oh, K. K., & Lee, S. H. (2019). Development of cellulose hydrogel microspheres for lipase immobilization. Biotechnology and Bioprocess Engineering, 24(1), 145-154. https://doi.org/10.1007/s12257-018-0335-0

  • Kalia, S., Dufresne, A., Cherian, B. M., Kaith, B. S., Avérous, L., Njuguna, J., & Nassiopoulos, E. (2011). Cellulose-based bio- and nanocomposites: A review. International Journal of Polymer Science, 2011, 1-35. https://doi.org/10.1155/2011/837875

  • Karri, R. R., Tanzifi, M., Yaraki, M. T., & Sahu, J. N. (2018). Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network. Journal of Environmental Management, 223, 517-529. https://doi.org/10.1016/j.jenvman.2018.06.027

  • Kemin, L. V., & Chin, S. F. (2020). Amino-starch nanoparticles as controlled release nanocarriers for curcumin. Journal of Physical Science, 31(2), 1-14. https://doi.org/10.21315/jps2020.31.2.1

  • Kim, B., Choi, Y., Choi, J., Shin, Y., & Lee, S. (2020). Effect of surfactant on wetting due to fouling in membrane distillation membrane: Application of response surface methodology (RSM) and artificial neural networks (ANN). Korean Journal of Chemical Engineering, 37(1), 1-10. https://doi.org/10.1007/s11814-019-0420-x

  • Lechuga, M., Fernández-Serrano, M., Jurado, E., Núñez-Olea, J., & Ríos, F. (2016). Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicology and Environmental Safety, 125, 1-8. https://doi.org/10.1016/j.ecoenv.2015.11.027

  • Lee, J., & Patel, R. (2022). Wastewater treatment by polymeric microspheres: A review. Polymers, 14(9), Article 1890. https://doi.org/10.3390/polym14091890

  • Lefroy, K. S., Murray, B. S., & Ries, M. E. (2022). Relationship between size and cellulose content of cellulose microgels (CMGs) and their water-in-oil emulsifying capacity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 647, Article 128926. https://doi.org/10.1016/j.colsurfa.2022.128926

  • Li, H., Kruteva, M., Dulle, M., Wang, Z., Mystek, K., Ji, W., Pettersson, T., & Wågberg, L. (2022). Understanding the drying behavior of regenerated cellulose gel beads: The effects of concentration and nonsolvents. ACS Nano, 16(2), 2608-2620. https://doi.org/10.1021/acsnano.1c09338

  • Li, M. C., Wu, Q., Song, K., Lee, S., Qing, Y., & Wu, Y. (2015). Cellulose nanoparticles: Structure-morphology-rheology relationships. ACS Sustainable Chemistry and Engineering, 3(5), 821-832. https://doi.org/https://doi.org/10.1021/acssuschemeng.5b00144

  • Li, M., Zhang, H., Wu, Z., Zhu, Z., & Jia, X. (2022). DPD simulation on the transformation and stability of O/W and W/O microemulsions. Molecules, 27(4), Article 1361. https://doi.org/10.3390/molecules27041361

  • Li, Q., Dang, L., Li, S., Liu, X., Guo, Y., Lu, C., Kou, X., & Wang, Z. (2018). Preparation of α-linolenic-acid-loaded water-in-oil-in-water microemulsion and its potential as a fluorescent delivery carrier with a free label. Journal of Agricultural and Food Chemistry, 66(49), 13020-13030. https://doi.org/10.1021/acs.jafc.8b04678

  • Li, Z., Wu, W., Jiang, W., Zhang, L., Li, Y., Tan, Y., Chen, S., Lv, M., Luo, F., Luo, T., & Wei, G. (2020). Preparation and regeneration of a thermo-sensitive adsorbent material: Methyl cellulose/calcium alginate beads (MC/CABs). Polymer Bulletin, 77(4), 1707-1728. https://doi.org/10.1007/s00289-019-02808-w

  • Lince, F., Marchisio, D. L., & Barresi, A. A. (2008). Strategies to control the particle size distribution of poly-ε-caprolactone nanoparticles for pharmaceutical applications. Journal of Colloid and Interface Science, 322(2), 505-515. https://doi.org/10.1016/j.jcis.2008.03.033

  • Liu, Y., Qiao, L., Wang, A., Li, Y., Zhao, L., & Du, K. (2021). Tentacle-type poly(hydroxamic acid)-modified macroporous cellulose beads: Synthesis, characterization, and application for heavy metal ions adsorption. Journal of Chromatography A, 1645, Article 462098. https://doi.org/10.1016/j.chroma.2021.462098

  • Luo, X., & Zhang, L. (2010). Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. Journal of Chromatography A, 1217(38), 5922-5929. https://doi.org/10.1016/j.chroma.2010.07.026

  • Machado, T. O., Grabow, J., Sayer, C., de Araújo, P. H. H., Ehrenhard, M. L., & Wurm, F. R. (2022). Biopolymer-based nanocarriers for sustained release of agrochemicals: A review on materials and social science perspectives for a sustainable future of agri- and horticulture. Advances in Colloid and Interface Science, 303, Article 102645. https://doi.org/10.1016/j.cis.2022.102645

  • Maity, D., Ding, J., & Xue, J. M. (2008). Synthesis of magnetite nanoparticles by thermal decomposition: Time, temperature, surfactant and solvent effects. Functional Materials Letters, 1(3), 189-193. https://doi.org/10.1142/S1793604708000381

  • Meng, R., Liu, L., Jin, Y., Luo, Z., Gao, H., & Yao, J. (2019). Recyclable carboxylated cellulose beads with tunable pore structure and size for highly efficient dye removal. Cellulose, 26(17), 8963-8969. https://doi.org/10.1007/s10570-019-02733-1

  • Michor, E. L., & Berg, J. C. (2015). Temperature effects on micelle formation and particle charging with span surfactants in apolar media. Langmuir, 31(35), 9602-9607. https://doi.org/10.1021/acs.langmuir.5b02711

  • Mohan, T., Ajdnik, U., Nagaraj, C., Lackner, F., Štiglic, A. D., Palani, T., Amornkitbamrung, L., Gradišnik, L., Maver, U., Kargl, R., & Kleinschek, K. S. (2022). One-step fabrication of hollow spherical cellulose beads: Application in pH-responsive therapeutic delivery. ACS Applied Materials and Interfaces, 14(3), 3726-3739. https://doi.org/10.1021/acsami.1c19577

  • Pal, N., Agarwal, M., & Gupta, R. (2022). Green synthesis of guar gum/Ag nanoparticles and their role in peel-off gel for enhanced antibacterial efficiency and optimization using RSM. International Journal of Biological Macromolecules, 221, 665-678. https://doi.org/10.1016/j.ijbiomac.2022.09.036

  • Pang, S. C., Chin, S. F., & Yih, V. (2011). Conversion of cellulosic waste materials into nanostructured ceramics and nanocomposites. Advanced Materials Letters, 2(2), 118-124. https://doi.org/10.5185/amlett.2011.1203

  • Pang, S. C., Voon, L. K., & Chin, S. F. (2018). Controlled depolymerization of cellulose fibres isolated from lignocellulosic biomass wastes. International Journal of Polymer Science, 2018, 1-11. https://doi.org/10.1155/2018/6872893

  • Ren, S., Sun, X., Lei, T., & Wu, Q. (2014). The effect of chemical and high-pressure homogenization treatment conditions on the morphology of cellulose nanoparticles. Journal of Nanomaterials, 2014, 168-168. https://doi.org/10.1155/2014/582913

  • Roque, L., Fernández, M., Benito, J. M., & Escudero, I. (2020). Stability and characterization studies of Span 80 niosomes modified with CTAB in the presence of NaCl. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 601, Article 124999. https://doi.org/10.1016/j.colsurfa.2020.124999

  • Russell-Jones, G., & Himes, R. (2011). Water-in-oil microemulsions for effective transdermal delivery of proteins. Expert Opinion on Drug Delivery, 8(4), 537-546. https://doi.org/10.1517/17425247.2011.559458

  • Saleh, T. A. (2021). Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environmental Technology and Innovation, 24, Article 101821. https://doi.org/10.1016/j.eti.2021.101821

  • Schroeter, B., Yonkova, V. P., Niemeyer, N. A. M., Jung, I., Preibisch, I., Gurikov, P., & Smirnova, I. (2021). Cellulose aerogel particles: Control of particle and textural properties in jet cutting process. Cellulose, 28(1), 223-239. https://doi.org/10.1007/s10570-020-03555-2

  • Sebeia, N., Jabli, M., Ghanmi, H., Ghith, A., & Saleh, T. A. (2021). Effective dyeing of cotton fibers using cynomorium coccineum L. peel extracts: Study of the influential factors using surface response methodology. Journal of Natural Fibers, 18(1), 21-33. https://doi.org/10.1080/15440478.2019.1612302

  • Shahnaz, T., Sharma, V., Subbiah, S., & Narayanasamy, S. (2020). Multivariate optimisation of Cr(VI), Co(III) and Cu(II) adsorption onto nanobentonite incorporated nanocellulose/chitosan aerogel using response surface methodology. Journal of Water Process Engineering, 36, Article 101283. https://doi.org/10.1016/j.jwpe.2020.101283

  • Shi, F., Lin, D. Q., Phottraithip, W., & Yao, S. J. (2011). Preparation of cellulose-tungsten carbide composite beads with ionic liquid for expanded bed application. Journal of Applied Polymer Science, 119(6), 3453-3461. https://doi.org/10.1002/app.33005

  • Shi, W., Ching, Y. C., & Chuah, C. H. (2021). Preparation of aerogel beads and microspheres based on chitosan and cellulose for drug delivery: A review. International Journal of Biological Macromolecules, 170, 751-767. https://doi.org/10.1016/j.ijbiomac.2020.12.214

  • Song, M., Liu, W., Wang, Q., Wang, J., & Chai, J. (2020). A surfactant-free microemulsion containing diethyl malonate, ethanol, and water: Microstructure, micropolarity and solubilizations. Journal of Industrial and Engineering Chemistry, 83, 81-89. https://doi.org/10.1016/j.jiec.2019.11.016

  • Tay, S. H., Pang, S. C., & Chin, S. F. (2012). A facile approach for controlled synthesis of hydrophilic starch-based nanoparticles from native sago starch. Starch/Staerke, 64(12), 984-990. https://doi.org/10.1002/star.201200056

  • Tong, K., Zhao, C., Sun, Z., & Sun, D. (2015). Formation of concentrated nanoemulsion by W/O microemulsion dilution method: Biodiesel, tween 80, and water system. ACS Sustainable Chemistry & Engineering, 3(12), 3299-3306. https://doi.org/10.1021/acssuschemeng.5b00903

  • Trygg, J., Fardim, P., Gericke, M., Mäkilä, E., & Salonen, J. (2013). Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydrate Polymers, 93(1), 291-299. https://doi.org/10.1016/j.carbpol.2012.03.085

  • Voon, L. K., Pang, S. C., & Chin, S. F. (2015). Highly porous cellulose beads of controllable sizes derived from regenerated cellulose of printed paper wastes. Materials Letters, 164, 264-266. https://doi.org/10.1016/j.matlet.2015.10.161

  • Voon, L. K., Pang, S. C., & Chin, S. F. (2016). Regeneration of cello-oligomers via selective depolymerization of cellulose fibers derived from printed paper wastes. Carbohydrate Polymers, 142, 31-37. https://doi.org/10.1016/j.carbpol.2016.01.027

  • Voon, L. K., Pang, S. C., & Chin, S. F. (2017a). Optimizing delivery characteristics of curcumin as a model drug via tailoring mean diameter ranges of cellulose beads. International Journal of Polymer Science, 2017, Article 2581767. https://doi.org/10.1155/2017/2581767

  • Voon, L. K., Pang, S. C., & Chin, S. F. (2017b). Porous cellulose beads fabricated from regenerated cellulose as potential drug delivery carriers. Journal of Chemistry, 2017, Article 1943432. https://doi.org/10.1155/2017/1943432

  • Wang, G., Yang, X., & Wang, W. (2019). Reinforcing linear low-density polyethylene with surfactant-treated microfibrillated cellulose. Polymers, 11(3), Article 441. https://doi.org/10.3390/polym11030441

  • Winuprasith, T., & Suphantharika, M. (2015). Properties and stability of oil-in-water emulsions stabilized by microfibrillated cellulose from mangosteen rind. Food Hydrocolloids, 43, 690-699. https://doi.org/10.1016/j.foodhyd.2014.07.027

  • Wu, R., & Hu, C. (2021). Fabrication of magnetic cellulose microspheres by response surface methodology and adsorption study for Cu(II). Cellulose, 28(3), 1499-1511. https://doi.org/10.1007/s10570-020-03640-6

  • Xu, F., & Cho, B. U. (2022). Preparation of porous regenerated cellulose microstructures via emulsion-coagulation technique. Cellulose, 29(3), 1527-1542. https://doi.org/10.1007/s10570-022-04428-6

  • Yan, X., Berard, J., & Ganachaud, F. (2021). Nanoprecipitation as a simple and straightforward process to create complex polymeric colloidal morphologies. Advances in Colloid and Interface Science, 294, Article 102474. https://doi.org/10.1016/j.cis.2021.102474