e-ISSN 2231-8526
ISSN 0128-7680
Nur Tantiyani Ali Othman and Nurfadilah Izaty Senu
Pertanika Journal of Science & Technology, Volume 32, Issue 3, April 2024
DOI: https://doi.org/10.47836/pjst.32.3.21
Keywords: Computational fluid dynamics, drying, fluidized bed dryer, respond surface methodology, sago waste
Published on: 24 April 2024
This study presents a model-driven approach to enhance the efficiency of sago drying utilizing a two-dimensional fluidized bed dryer (FBD). ANSYS® DesignModelerTM 2020 R2 software was employed to simulate the drying profile, considering variations in sago bagasse particle diameter (ranging from 500 to 2000 µm), hot air temperature (ranging from 50 to 90 °C), and inlet air velocity (ranging from 1.5 to 2.1 m/s). The simulation results provided valuable insights into the interplay between these critical drying parameters. The model enabled the prediction of moisture content profiles during the sago drying process under different conditions, thereby facilitating comprehension of the system’s behavior. Using Design Expert® 7.00 (DX7), considering energy efficiency and product quality, an optimal set of conditions for sago drying was determined at 2000 µm, 90 °C and 2.1 m/s. This approach not only streamlined the drying process but also significantly reduced energy consumption while ensuring consistent and high-quality sago. The findings of this research offer a practical and sustainable solution for sago producers, which, when applied, can contribute to improved product quality, reduced production costs, and enhanced food security in the region. Furthermore, the model-driven approach and the integration of specialized software tools demonstrate the potential for broader applications in optimizing various drying processes in the food industry.
Antony, J., & Shyamkumar, M. B. (2016). Study on sand particles drying in a fluidized bed dryer using CFD. International Journal of Engineering Studies, 8(2), 129-145.
Arumuganathan, T., Manikantan, M. R., Ramanathan, M., Rai, R. D., Indurani, C., & Karthiayani, A. (2017). Effect of diffusion channel storage on some physical properties of button mushroom (Agaricus bisporus) and shelf-life extension. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87(3), 705-718. https://doi.org/10.1007/s40011-015-0628-4
Assawarachan, R. (2013). Drying kinetics of coconut residue in fluidized bed. International Journal of Agriculture Innovations and Research, 2(2), 263–266.
Azmir, J., Hou, Q., & Yu, A. (2018). Discrete particle simulation of food grain drying in a fluidised bed. Powder Technology, 323, 238-249. https://doi.org/10.1016/j.powtec.2017.10.019
Dechsiri, C. (2004). Particle Transport in Fluidized Beds: Experiments and Stochastic Models. [Unpublished Doctoral thesis]. University of Groningen.
Gazor, H. R., & Mohsenimanesh, A. (2010). Modelling the drying kinetics of canola in fluidised bed dryer. Czech Journal of Food Sciences, 28(6), 531-537. https://doi.org/10.17221/256/2009-CJFS
Halim, L. A., Basrawi, M. F., Faizal, S. N., Yudin, A. S. M., & Yusof, T. M. (2020). Effect of superficial air velocity on the fluidized bed drying performance of stingless bee pot-pollen. IOP Conference Series: Materials Science and Engineering, 863(1), Article 012041. https://doi.org/10.1088/1757-899X/863/1/012041
Han, M. (2015). Characterization of Fine Particle Fluidization. [Doctoral dissertation]. The University of Western Ontario. https://ir.lib.uwo.ca/etd/3073
Hasibuan, R., Pane, Y. M., & Hanief, S. (2018, August 30-31). Effect of air velocity and thickness to drying rate and qualitytemulawak (Curcum xanthorrhiza roxb) using combination solar moleculer sieve. [Paper presentation]. The International Conference of Science, Technology, Engineering, Environmental and Ramification Researches-ICOSTEERR, Sumatera Utara, Indonesia. https://doi.org/10.5220/0010103503890394
Li-Zhen, D., Arun, S.M., Qian, Z., Xu-Hai, Y., Jun, W., Zhi-An, Z., Zhen-Jiang, G., & Hong- Wei, X. (2019). Chemical and physical pretreatments of fruits and vegetables: Effects on drying characteristics and quality attributes – A comprehensive review. Critical Reviews in Food Science and Nutrition, 59(9), 1408-1432. https://doi.org/10.1080/10408398.2017.1409192
Luthra, K., & Sadaka, S. S. (2020). Challenges and opportunities associated with drying rough rice in fluidized bed dryers: A review. American Society of Agricultural and Biological Engineers, 63(3), 583-595. https://doi.org/10.13031/trans.13760
Maheswari, S. U. (2015). Drying of pearl millet using fluidised bed dryer: Experiments and modelling. International Journal of ChemTech Research, 8(1), 377-387.
Majdi, H., Esfahani, J. A., & Mohebbi, M. (2019). Optimization of convective drying by response surface methodology. Computers and Electronics in Agriculture, 156, 574-584. https://doi.org/10.1016/j.compag.2018.12.021
Malekjani, N., & Jafari, S. M. (2018). Simulation of food drying processes by computational fluid dynamics (CFD): Recent advances and approaches. Trends in Food Science & Technology, 78, 206-223. https://doi.org/10.1016/j.tifs.2018.06.006
Mortier, S. T. F., De Beer, T., Gernaey, K. V., Remon, J. P., Vervaet, C., & Nopens, I. (2011). Mechanistic modelling of fluidized bed drying processes of wet porous granules: A review. European Journal of Pharmaceutics and Biopharmaceutics, 79(2), 205-225. https://doi.org/10.1016/j.ejpb.2011.05.013
Naim, H. M., Yaakub, A. N., & Hamdan, D. A. A. (2016). Commercialization of sago through estate plantation scheme in Sarawak: The way forward. International Journal of Agronomy, 2016, Article 8319542. https://doi.org/10.1155/2016/8319542
Nasir, A. M. A., Rosli, M. I., Takriff, M. S., Othman, N. T. A., & Ravichandar, V. (2021). Computational fluid dynamics simulation of fluidized bed dryer for sago pith waste drying process. Jurnal Kejuruteraan, 33(2), 239-248. https://doi.org/10.17576/jkukm- 2021-33(2)-09
Norhaida, H. A. T., Ang, W. L., Kismurtono, M., & Siti, M. T. (2020). Effect of air temperature and velocity on the drying characteristics and product quality of Clinacanthus nutans in heat pump dryer. IOP Conference Series: Earth and Environmental Science, 462(1), Article 012052. https://doi.org/10.1088/1755-1315/462/1/012052
Okoronkwo, C. A., Nwufo, O. C., Nwaigwe, K. N., Ogueke, N. V., & Anyanwu, E. E. (2013). Experimental evaluation of a fluidized bed dryer performance. The International Journal of Engineering and Science, 2(6), 45-53.
Othman, N. T. A., & Ivan, A. H. (2021). Development of a fluidized bed dryer for drying of a sago bagasse. Pertanika Journal of Science & Technology, 29(3), 1831-1845 https://doi.org/10.47836/pjst.29.3.13
Pusat, S., Akkoyunlu, M. T., Erdem, H. H., & Teke, I. (2015). Effects of bed height and particle size on drying of a Turkish lignite. International Journal of Coal Preparation and Utilization, 35(4), Article 150203135736008. https://doi.org/10.1080/19392699.2015.1009051
Puspasari, I., Meor, Z., Wan Daud, D., & Tasirin, S. (2014). Characteristic drying curve of oil palm fibers. International Journal on Advanced Science, Engineering and Information Technology, 4(1), 20-24. https://doi.org/10.18517/ijaseit.4.1.361
Rashid, M. R. M., Johari, M. A. M., & Ahmad, Z. A. (2016). Sago pith waste ash as a new alternative raw materials from agricultural waste. Materials Science Forum, 840, 389-393. https://doi.org/10.4028/www.scientific.net/MSF.840.389
Rosli, M. I., Abdul Nasir, A. M., Takriff, M. S., & Lee, P. C. (2018). Simulation of a fluidized bed dryer for the drying of sago waste. Energies, 11(9), Article 2383. https://doi.org/ 10.3390/en11092383
Rosli, M. I., Nasir, A. A., Takriff, M. S., & Ravichandar, V. (2020). Drying sago pith waste in a fluidized bed dryer. Food and Bioproducts Processing, 123, 335-344. https://doi.org/10.1016/j.fbp.2020.07.005
Sarker, M. S. H., Ibrahim, M. N., Aziz, N. A., & Punan, M. S. (2015). Energy and exergy analysis of industrial fluidized bed drying of paddy. Energy, 84, 131-138. https://doi.org/10.1016/j.energy.2015.02.064
Shukrie, A., Anuar, S., & Oumer, A. N. (2016). Air distributor designs for fluidized bed combustors: A review. Engineering, Technology & Applied Science Research, 6(3), 1029-1034. https://doi.org/10.48084/etasr.688
Silva, B. G., Fileti, A. M. F., Foglio, M. A., Rosa, P. D. T. V., & Taranto, O. P. (2017). Effects of different drying conditions on key quality parameters of pink peppercorns (Schinus terebinthifolius Raddi). Journal of Food Quality, 2017, Article 3152797. https://doi.org/10.1155/2017/3152797
Tamboli, T. G., & Bhong, M. G. (2018). Review on different drying methods: Applications & advancements. International Journal on Theoretical and Applied Research in Mechanical Engineering, 7(1), 33-40.
Wang, A. H., & Chen, G. (2000). Heat and mass transfer in batch fluidized-bed drying of porous particles. Chemical Engineering Science, 55(10), 1857-1869. https://doi.org/10.1016/S0009-2509(99)00446-7
Wee, O. Y., Ling, L. P., Bujang, K., & Fong, L. S. (2017). Physiochemical characteristic of sago (Metroxylon sagu) starch production wastewater effluents. International Journal of Research in Advent Technology, 5(9), 4-13.
Zhang, W., Cheng, X., Hu, Y., & Yan, Y. (2017). Measurement of moisture content in a fluidized bed dryer using an electrostatic sensor array. Powder Technology, 325, 49-57. https://doi.org/10.1016/j.powtec.2017.11.006
ISSN 0128-7680
e-ISSN 2231-8526