e-ISSN 2231-8526
ISSN 0128-7680
Moraida Hasanah, Tengku Jukdin Saktisahdan, Susilawati, Frannoto, Adjie Padriansyah and Irfan Hafizh
Pertanika Journal of Science & Technology, Volume 32, Issue 5, August 2024
DOI: https://doi.org/10.47836/pjst.32.5.21
Keywords: Composite, fiberboard, palm frond fiber, polyester resin
Published on: 26 August 2024
Novel research has been conducted to characterize fiberboards made from palm frond fibers and polyester resin. In this study, polyester resin served as the matrix, and palm frond fibers with a size of 80 mesh were employed as the filler. The fiberboard composites were produced using a hot press at 70°C for 20 minutes, with varying mass compositions of polyester resin to palm frond fibers: S1 (60%:40%), S2 (65%:35%), S3 (70%:30%), S4 (75%:25%), and S5 (80%:20%). Parameters observed include physical properties (density and porosity), mechanical properties (impact, tensile, and flexural strength), and microstructure analysis using scanning electron microscope (SEM) and differential scanning calorimetry (DSC). The results indicate that S5 exhibits optimal properties, including a density value of 1.197 g/mL, low porosity at 0.232%, and mechanical characteristics with an impact strength of 271.251 J/m2, tensile strength of 23.221 MPa, and flexural strength of 149.837 MPa. However, according to the DSC data, S1 stands out with a higher temperature water evaporating point at 82.48°C, indicating greater thermal stability. In addition, SEM results for the S5 sample reveal minimal voids, enhancing the fiberboard composites’ physical and mechanical properties and demonstrating high stability. This fiberboard can be classified as a High-Density Fiberboard (HDF) according to JIS A 5905:2003. It is a viable alternative for household furniture, offering a substitute for traditional wood.
Ahmad, M. N., Ishak, M. R., Mohammad Taha, M., Mustapha, F., Leman, Z., & Irianto. (2023). Mechanical, thermal and physical characteristics of oil palm (Elaeis Guineensis) fiber reinforced thermoplastic composites for FDM-Type 3D printer. Polymer Testing, 120, Article 107972. https://doi.org/10.1016/j.polymertesting.2023.107972
Ali, M., Alabdulkarem, A., Nuhait, A., Al-Salem, K., Iannace, G., & Almuzaiqer, R. (2022). Characteristics of agro waste fibers as new thermal insulation and sound absorbing materials: Hybrid of date palm tree leaves and wheat straw fibers. Journal of Natural Fibers, 19(13), 6576-6594. https://doi.org/10.1080/15440478.2021.1929647
American Society for Testing and Materials. (2017). Standard test method for tensile properties of polymer matrix composite materials (ASTM D3039). ASTM International. https://www.astm.org/d3039_d3039m-17.html
American Society for Testing and Materials. (2017). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials (ASTM D790). ASTM International. https://www.astm.org/d0790-17.html
American Society for Testing and Materials. (2023). Standard test methods for determining the Izod pendulum impact resistance of plastics (ASTM D256). ASTM International. https://www.astm.org/standards/d256
American Society for Testing and Materials. (2023). Standard test methods for size, dimensional measurements, and bulk density of refractory brick and insulating firebrick (ASTM C134). ASTM International. https://www.astm.org/c0134-95r23.html
Arévalo, R., & Peijs, T. (2016). Binderless all-cellulose fibreboard from microfibrillated lignocellulosic natural fibres. Composites Part A: Applied Science and Manufacturing, 83, 38-46. https://doi.org/10.1016/j.compositesa.2015.11.027
Cai, M., Takagi, H., Nakagaito, A. N., Li, Y., & Waterhouse, G. I. N. (2016). Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Composites Part A: Applied Science and Manufacturing, 90, 589-597. https://doi.org/10.1016/j.compositesa.2016.08.025
Chaharmahali, M., Tajvidi, M., & Najafi, S. K. (2008). Mechanical properties of wood plastic composite panels made from waste fiberboard and particleboard. Polymer Composites, 29(6), 606-610. https://doi.org/10.1002/pc.20434
Chiromito, E. M. S., Trovatti, E., & Carvalho, A. J. F. (2019). Water-based processing of fiberboard of acrylic resin composites reinforced with cellulose wood pulp and cellulose nanofibrils. Journal of Renewable Materials, 7(5), 403-413. https://doi.org/10.32604/jrm.2019.01846
Daramola, O. O., Akinwande, A. A., Adediran, A. A., Balogun, O. A., Olajide, J. L., Adedoyin, K. J., Adewuyi, B. O., & Jen, T. C. (2023). Optimization of the mechanical properties of polyester/coconut shell ash (CSA) composite for light-weight engineering applications. Scientific Reports, 13, Article 1066. https://doi.org/10.1038/s41598-022-26632-x
Deininger, K. W., & Minten, B. (1999). Poverty, policies, and deforestation: The case of Mexico. Economic Development and Cultural Change, 47(2), 313-344. https://doi.org/10.1086/452403
Essabir, H., Boujmal, R., Bensalah, M. O., Rodrigue, D., Bouhfid, R., & Qaiss, A. E. K. (2016). Mechanical and thermal properties of hybrid composites: Oil-palm fiber/clay reinforced high density polyethylene. Mechanics of Materials, 98, 36-43. https://doi.org/10.1016/j.mechmat.2016.04.008
Gao, Y., Romero, P., Zhang, H., Huang, M., & Lai, F. (2019). Unsaturated polyester resin concrete: A review. Construction and Building Materials, 228, Article 116709. https://doi.org/10.1016/j.conbuildmat.2019.116709
Ghori, S. W., & Rao, G. S. (2021). Fiber loading of date palm and kenaf reinforced epoxy composites: Tensile, impact and morphological properties. Journal of Renewable Materials, 9(7), 1283-1292. https://doi.org/10.32604/jrm.2021.014987
González-García, S., Feijoo, G., Widsten, P., Kandelbauer, A., Zikulnig-Rusch, E., & Moreira, M. T. (2009). Environmental performance assessment of hardboard manufacture. The International Journal of Life Cycle Assessment, 14, 456-466. https://doi.org/10.1007/s11367-009-0099-z
Hachaichi, A., Kouini, B., Kian, L. K., Asim, M., & Jawaid, M. (2021). Extraction and characterization of microcrystalline cellulose from date palm fibers using successive chemical treatments. Journal of Polymers and the Environment, 29, 1990-1999. https://doi.org/10.1007/s10924-020-02012-2
Kalam, A., Sahari, B. B., Khalid, Y. A., & Wong, S. V. (2005). Fatigue behaviour of oil palm fruit bunch fibre/epoxy and carbon fibre/epoxy composites. Composite Structures, 71(1), 34-44. https://doi.org/10.1016/j.compstruct.2004.09.034
Karina, M., Onggo, H., Abdullah, A. H. D., & Syampurwadi, A. (2007). Effect of oil palm empty fruit bunch fiber on the physical and mechanical properties of fiber glass reinforced polyester resin. Journal of Biological Sciences, 8(1), 101-106. https://doi.org/10.3923/jbs.2008.101.106
Kariuki, S. W., Wachira, J., Kawira, M., & Murithi, G. (2020). Crop residues used as lignocellulose materials for particleboards formulation. Heliyon, 6(9), Article e05025. https://doi.org/10.1016/j.heliyon.2020.e05025
Kazayawoko, M., Balatinecz, J. J., & Matuana, L. M. (1999). Surface modification and adhesion mechanisms in woodfiber-polypropylene composites. Journal of Materials Science, 34, 6189-6199. https://doi.org/10.1023/A:1004790409158
Krausmann, F., Gingrich, S., Eisenmenger, N., Erb, K.-H., Haberl, H., & Fischer-Kowalski, M. (2009). Growth in global materials use, GDP and population during the 20th century. Ecological Economics, 68(10), 2696-2705. https://doi.org/10.1016/j.ecolecon.2009.05.007
Mlhem, A., Abu-Jdayil, B., Tong-Earn, T., & Iqbal, M. (2022). Sustainable heat insulation composites from date palm fibre reinforced poly(β-hydroxybutyrate). Journal of Building Engineering, 54, Article 104617. https://doi.org/10.1016/j.jobe.2022.104617
Patil, H., Sudagar, I. P., Pandiselvam, R., Sudha, P., & Boomiraj, K. (2023). Development and characterization of rigid packaging material using cellulose/sugarcane bagasse and natural resins. International Journal of Biological Macromolecules, 246, Article 125641. https://doi.org/10.1016/j.ijbiomac.2023.125641
Raju, K., & Balakrishnan, M. (2020). Evaluation of mechanical properties of palm fiber/glass fiber and epoxy combined hybrid composite laminates. Materials Today: Proceedings, 21(Part 1), 52-55. https://doi.org/10.1016/j.matpr.2019.05.359
Ramlee, N. A., Naveen, J., & Jawaid, M. (2021). Potential of oil palm empty fruit bunch (OPEFB) and sugarcane bagasse fibers for thermal insulation application - A review. Construction and Building Materials, 271, Article 121519. https://doi.org/10.1016/j.conbuildmat.2020.121519
Raza, M., Al Abdallah, H., Kozal, M., Al Khaldi, A., Ammar, T., & Abu-Jdayil, B. (2023). Development and characterization of polystyrene-date palm surface fibers composites for sustainable heat insulation in construction. Journal of Building Engineering, 75, Article 106982. https://doi.org/10.1016/j.jobe.2023.106982
Rebolledo, P., Cloutier, A., & Yemele, M. C. (2018). Effect of density and fiber size on porosity and thermal conductivity of fiberboard mats. Fibers, 6(4), Article 81. https://doi.org/10.3390/fib6040081
Romanzini, D., Lavoratti, A., Ornaghi, H. L., Amico, S. C., & Zattera, A. J. (2013). Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Materials & Design, 47, 9-15. https://doi.org/10.1016/j.matdes.2012.12.029
Rosli, M. A. A., Purwanto, N. B., Chen, L. W., Bhkari, N. M., Geng, B. J., Selamat, M. E. Bin, & Young, L. J. (2024). An overview of medium-density fiberboard and oriented strand board made from eucalyptus wood. In S. H. Lee, W. C. Lum, P. Antov, Ľ. Krišťák, M. A. R. Lubis, & W. Fatriasari (Eds.), Eucalyptus (pp. 73-87). Springer. https://doi.org/10.1007/978-981-99-7919-6_5
Rowell, R. M. (2014). The use of biomass to produce bio-based composites and building materials. In Advances in Biorefineries (pp. 803-818). Woodhead Publishing. https://doi.org/10.1533/9780857097385.2.803
Sales, S. L. T., Aldamia, F. J., Gonzaga, P. S., Montesclaros, A. J. S., & Lawagon, C. P. (2022). Properties of fiber cement boards influenced by BSCH (banana stem and corn husk) fibers and citric acid addition. Key Engineering Materials, 913, 125-130. https://doi.org/10.4028/p-qv513a
Seixas, A. A. A., Figueiredo, L. R. F., Santos, A. S. F., & Medeiros, E. S. (2023). Influence of the addition of glycerol-derived polymers on the properties of post-consumer recycled PET. Journal of Polymer Research, 30, Article 372. https://doi.org/10.1007/s10965-023-03754-y
Shinoj, S., Visvanathan, R., & Panigrahi, S. (2010). Towards industrial utilization of oil palm fibre: Physical and dielectric characterization of linear low density polyethylene composites and comparison with other fibre sources. Biosystems Engineering, 106(4), 378-388. https://doi.org/10.1016/j.biosystemseng.2010.04.008
Tang, Q., Fang, L., & Guo, W. (2017). Investigation into mechanical, thermal, flame-retardant properties of wood fiber reinforced ultra-high-density fiberboards. BioResources, 12(3), 6749-6762. https://doi.org/10.15376/biores.12.3.6749-6762
Vitrone, F., Ramos, D., Ferrando, F., & Salvadó, J. (2021). Binderless fiberboards for sustainable construction. Materials, production methods and applications. Journal of Building Engineering, 44, Article 102625. https://doi.org/10.1016/j.jobe.2021.102625
Wang, J., & Hu, Y. (2016). Novel particleboard composites made from coir fiber and waste banana stem fiber. Waste and Biomass Valorization, 7, 1447-1458. https://doi.org/10.1007/s12649-016-9523-3
Yuan, T., Du, W., Bai, K., Huang, D., Nguyen, T. T., Li, J., & Ji, X. (2022). Preparation of an environment-friendly fiberboard with high mechanical strength using delignified wood fiber. Vacuum, 196, Article 110753. https://doi.org/10.1016/j.vacuum.2021.110753
Zhang, J., Fang, Y., Zhang, A., Yu, Y., Liu, L., Huo, S., Zeng, X., Peng, H., & Song, P. (2023). A Schiff base-coated ammonia polyphosphate for improving thermal and fire-retardant properties of unsaturated polyester. Progress in Organic Coatings, 185, Article 107910. https://doi.org/10.1016/j.porgcoat.2023.107910
ISSN 0128-7680
e-ISSN 2231-8526