e-ISSN 2231-8542
ISSN 1511-3701
Eni Suhesti, Lili Zalizar, Joko Triwanto, Ervayenri Ervayenri and Indra Purnama
Pertanika Journal of Tropical Agricultural Science, Pre-Press
DOI: https://doi.org/10.47836/pjtas.47.4.10
Keywords: Acacia crassicarpa, Apis mellifera, monofloral honey, peat swamp forest, tropical forest honey
Published: 2024-10-25
The comprehensive understanding of the physicochemical profile of monofloral honey derived from Acacia crassicarpa, specifically in the Indonesian tropical forest ecosystem, has not been fully explored. The physicochemical characteristics of honey significantly influence its quality and consumer acceptance. Harvest time and the age of Acacia plants, which are suspected to affect honey’s physicochemical properties, are this study’s focal points. Our objective is to analyze the impact of harvest time and Acacia age on the physicochemical characteristics of honey. Using a complete randomized block design, treatments were administered at 14, 21, and 30 days of harvest within three Acacia age groups: 3, 8, and 18 months. The honey composition was assessed following the Indonesian National Standard 8664:2018 procedure. The statistical analysis determined the optimal harvest period for honey by assessing its physicochemical properties and comparing them to the Indonesian National Standard 8664:2018 procedure (SNI 8664:2018 standards). One-way analysis of variance evaluated the effects of harvest time and plant age on composition, followed by a least significant difference tests to identify significant differences between harvest times. Results indicate a significant influence of harvest time and Acacia age on all honey composition variables, including diastase enzyme activity, hydroxymethylfurfural content, moisture level, sugar content, and acidity (P<0.01). Our findings suggest optimal honey harvest at 30 days, aligning with the 8th and 18th months of A. crassicarpa. Most variables met SNI 8664:2018 standards, except acidity levels. Further investigation is needed to discern the causes of acidity in Apis mellifera honey from Indonesian peat swamp forests.
Abou-Shaara, H. F., Owayss, A. A., Ibrahim, Y. Y., & Basuny, N. K. (2017). A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Sociaux, 64, 455–463. https://doi.org/10.1007/s00040-017-0573-8
Al-Ghamdi, A., Mohammed, S. E. A., Ansari, M. J., & Adgaba, N. (2019). Comparison of physicochemical properties and effects of heating regimes on stored Apis mellifera and Apis florea honey. Saudi Journal of Biological Sciences, 26(4), 845–848. https://doi.org/10.1016/j.sjbs.2017.06.002
Alvarez-Suarez, J. M., Giampieri, F., Brenciani, A., Mazzoni, L., Gasparrini, M., González-Paramás, A. M., Santos-Buelga, C., Morroni, G., Simoni, S., Forbes-Hernández, T. Y., Afrin, S., Giovanetti, E., & Battino, M. (2018). Apis mellifera vs Melipona beecheii Cuban polifloral honeys: A comparison based on their physicochemical parameters, chemical composition and biological properties. LWT, 87, 272–279. https://doi.org/10.1016/j.lwt.2017.08.079
Ananias, K. R., de Melo, A. A. M., & de Moura, C. J. (2013). Analysis of moisture content, acidity and contamination by yeast and molds in Apis mellifera L. honey from central Brazil. Brazilian Journal of Microbiology, 44(3), 679–683. https://doi.org/10.1590/S1517-83822013000300003
Badan Standardisasi Nasional. (2018). SNI 8664-2018: Madu [SNI 8664-2018: Honey]. https://pesta.bsn.go.id/produk/detail/13137-sni86642018
Baroni, M. V., Podio, N. S., Badini, R. G., Inga, M., Ostera, H. A., Cagnoni, M., Gautier, E. A., García, P. P., Hoogewerff, J., & Wunderlin, D. A. (2015). Linking soil, water, and honey composition to assess the geographical origin of Argentinean honey by multielemental and isotopic analyses. Journal of Agricultural and Food Chemistry, 63(18), 4638–4645. https://doi.org/10.1021/jf5060112
Bell, A. R., & Grainger, M. N. C. (2023). Accelerated loss of diastase in mānuka honey: Investigation of mānuka specific compounds. Food Chemistry, 426, 136614. https://doi.org/10.1016/j.foodchem.2023.136614
Berhe, A., Tesfaye, E., & Terle, D. (2018). Evaluation of physicochemical properties of honey bees (Apis mellifera) in Godere woreda, Gambella, Ethiopia. American Journal of Food Science and Technology, 6(1), 50–56. https://doi.org/10.12691/ajfst-6-1-8
Boussaid, A., Chouaibi, M., Rezig, L., Hellal, R., Donsì, F., Ferrari, G., & Hamdi, S. (2018). Physicochemical and bioactive properties of six honey samples from various floral origins from Tunisia. Arabian Journal of Chemistry, 11(2), 265–274. https://doi.org/10.1016/j.arabjc.2014.08.011
Can, Z., Yildiz, O., Sahin, H., Turumtay, E. A., Silici, S., & Kolayli, S. (2015). An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chemistry, 180, 133–141. https://doi.org/10.1016/j.foodchem.2015.02.024
Chua, L. S., & Adnan, N. A. (2014). Biochemical and nutritional component of selected honey samples. Acta Scientiarum Polonorum, Technologia Alimentaria, 13(2), 169–179.
Czipa, N., Phillips, C. J. C., & Kovács, B. (2019). Composition of acacia honeys following processing, storage and adulteration. Journal of Food Science and Technology, 56(3), 1245–1255. https://doi.org/10.1007/s13197-019-03587-y
da S. Sant’ana, R., de Carvalho, C. A. L., Oda-Souza, M., de A. Souza, B., & de S. Dias, F. (2020). Characterization of honey of stingless bees from the Brazilian semi-arid region. Food Chemistry, 327, 127041. https://doi.org/10.1016/j.foodchem.2020.127041
da Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309–323. https://doi.org/10.1016/j.foodchem.2015.09.051
De-Melo, A. A. M., de Almeida-Muradian, L. B., Sancho, M. T., & Pascual-Maté, A. (2018). Composición y propiedades de la miel de Apis mellifera: Una revisión [Composition and properties of Apis mellifera honey: A review]. Journal of Apicultural Research, 57(1), 5–37. https://doi.org/10.1080/00218839.2017.1338444
do Nascimento, K. S., Sattler, J. A. G., Macedo, L. F. L., González, C. V. S., de Melo, I. L. P., da Silva Araújo, E., Granato, D., Sattler, A., & de Almeida-Muradian, L. B. (2018). Phenolic compounds, antioxidant capacity and physicochemical properties of Brazilian Apis mellifera honeys. LWT, 91, 85–94. https://doi.org/10.1016/j.lwt.2018.01.016
dos Santos Scholz, M. B., Júnior, A. Q., Delamuta, B. H., Nakamura, J. M., Baudraz, M. C., Reis, M. O., Kato, T., Pedrão, M. R., Dias, L. F., dos Santos, D. T. R., Kitzberger, C. S. G., & Bianchini, F. P. (2020). Indication of the geographical origin of honey using its physicochemical characteristics and multivariate analysis. Journal of Food Science and Technology, 57, 1896–1903. https://doi.org/10.1007/s13197-019-04225-3
Erban, T., Shcherbachenko, E., Talacko, P., & Harant, K. (2021). A single honey proteome dataset for identifying adulteration by foreign amylases and mining various protein markers natural to honey. Journal of Proteomics, 239, 104157. https://doi.org/https://doi.org/10.1016/j.jprot.2021.104157
Erniaty, E., Gumiri, S., Ardianor, A., Haryono, A., Yulintine, Y., & Masliani, M. (2023). Analysis of water physical, chemical and biological properties in different peat swamp forests converted to rice fields. In IOP Conference Series: Earth and Environmental Science (Vol. 1153, No. 1, p. 012026). IOP Publishing. https://doi.org/10.1088/1755-1315/1153/1/012026
Escuredo, O., Dobre, I., Fernández-González, M., & Seijo, M. C. (2014). Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon. Food Chemistry, 149, 84–90. https://doi.org/10.1016/j.foodchem.2013.10.097
Escuredo, O., Míguez, M., Fernández-González, M., & Seijo, M. C. (2013). Nutritional value and antioxidant activity of honeys produced in a European Atlantic area. Food Chemistry, 138(2–3), 851–856. https://doi.org/10.1016/j.foodchem.2012.11.015
Eyer, M., Neumann, P., & Dietemann, V. (2016). A look into the cell: Honey storage in honey bees, Apis mellifera. PLOS One, 11(8), e0161059. https://doi.org/10.1371/journal.pone.0161059
Ghramh, H. A., Alrumman, S. A., Ahmad, I., Kalam, A., Elbehairi, S. E. I., Alfaify, A. M., Mohammed, M. E. A., Al-Sehemi, A. G., Alfaifi, M., Al-Shehri, B. M., Alshareef, R. M. H., Alaerjani, W. M. A., & Khan, K. A. (2023). Chemical characterization of honey and its effect (alone as well as with synthesized silver nanoparticles) on microbial pathogens’ and human cancer cell lines’ growth. Nutrients, 15(3), 684. https://doi.org/10.3390/nu15030684
Hailu, D., & Belay, A. (2020). Melissopalynology and antioxidant properties used to differentiate Schefflera abyssinica and polyfloral honey. PLOS One, 15(10), e0240868. https://doi.org/10.1371/journal.pone.0240868
Handayani, T. H., Budiman, M. A., Amalia, R. L. R., Pribadi, A., Elfitra, R. R., & Ferdian, P. R. (2022). Aktivitas antioksidan, total fenolik, dan total flavonoid madu Apis mellifera dari hutan akasia (Accacia crassicarpa) Riau, Indonesia dengan beberapa perlakuan pengeringan [Antioxidant activity, total phenolics, and total flavonoids of Apis mellifera honey from acacia (Accacia crassicarpa) forests in Riau, Indonesia with several drying treatments]. Jurnal Biologi Indonesia, 18(2), 231–243. https://doi.org/10.47349/jbi/18022022/231
Juan-Borrás, M., Domenech, E., Hellebrandova, M., & Escriche, I. (2014). Effect of country origin on physicochemical, sugar and volatile composition of acacia, sunflower and tilia honeys. Food Research International, 60, 86–94. https://doi.org/10.1016/j.foodres.2013.11.045
Karabagias, I. K., Badeka, A., Kontakos, S., Karabournioti, S., & Kontominas, M. G. (2014). Characterisation and classification of Greek pine honeys according to their geographical origin based on volatiles, physicochemical parameters and chemometrics. Food Chemistry, 146, 548–557. https://doi.org/10.1016/j.foodchem.2013.09.105
Kek, S. P., Chin, N. L., Yusof, Y. A., Tan, S. W., & Chua, L. S. (2018). Classification of entomological origin of honey based on its physicochemical and antioxidant properties. International Journal of Food Properties, 20(sup3), S2723–S2738. https://doi.org/10.1080/10942912.2017.1359185
Lewkowski, O., Mureşan, C. I., Dobritzsch, D., Fuszard, M., & Erler, S. (2019). The effect of diet on the composition and stability of proteins secreted by honey bees in honey. Insects, 10(9), 282. https://doi.org/10.3390/insects10090282
Maulida, I. D., Al Marsam, M. R., Purnama, I., & Mutamima, A. (2024). A novel beverage with functional potential incorporating cascara (Coffea arabica), roselle (Hibiscus sabdariffa), and red ginger (Zingiber officinale Rosc. var. rubrum) extracts: Chemical properties and sensory evaluation. Discover Food, 4, 94. https://doi.org/10.1007/s44187-024-00180-x
Oroian, M., & Sorina, R. (2017). Honey authentication based on physicochemical parameters and phenolic compounds. Computers and Electronics in Agriculture, 138, 148–156. https://doi.org/10.1016/j.compag.2017.04.020
Pasias, I. N., Kiriakou, I. K., Kaitatzis, A., Koutelidakis, A. E., & Proestos, C. (2018). Effect of late harvest and floral origin on honey antibacterial properties and quality parameters. Food Chemistry, 242, 513–518. https://doi.org/10.1016/j.foodchem.2017.09.083
Pribadi, A., & Purnomo. (2013). Agroforestry sorghum (Sorghum spp.) pada HTI Acacia crassicarpa sebagai sumber pakan lebah Apis cerana di Provinsi Riau untuk mendukung budidaya lebah madu [Agroforestry sorghum (Sorghum spp.) on IPF Acacia crassicarpa as a source of feed for Apis cerana bees in Riau Province to support honey bee cultivation]. In D. P. Kuswantoro, T. S. Widyaningsih, E. Fauziyah, & R. Rachmawati (Eds.), Prosiding Seminar Nasional Agroforestri 2013: Agroforestri untuk Pangan dan Lingkungan yang Lebih Baik (pp. 36-41). Balai Penelitian Teknologi Agroforestry, Fakultas Pertanian Universitas Brawijaya, World Agroforestry Centre (ICRAF), and Masyarakat Agroforestri Indonesia.
Pribadi, A., & Wiratmoko, M. D. E. (2023). Karakteristik fisikokimia madu Heterotrigona itama asal Provinsi Riau [Physicochemictry characteristics of Heterotrigona itama honey from Riau Province]. Wahana Forestra: Jurnal Kehutanan, 18(2), 105-120. https://doi.org/10.31849/forestra.v18i2.11107
Purwanto, D. B., Kuntadi., Adalina, Y., Meilin, A., Raffiudin, R., & Sahlan, M. (2024). Evaluation of honey production for industry purposes, the case of beekeeping with Apis mellifera in Indonesia after the COVID-19 pandemic. International Journal of Social Service and Research, 4(3), 702-715. https://doi.org/10.46799/ijssr.v4i03.719
Puscas, A., Hosu, A., & Cimpoiu, C. (2013). Application of a newly developed and validated high-performance thin-layer chromatographic method to control honey adulteration. Journal of Chromatography A, 1272, 132–135. https://doi.org/10.1016/j.chroma.2012.11.064
Radtke, J., & Lichtenberg-Kraag, B. (2018). Long-term changes in naturally produced honey depending on processing and temperature. Journal of Apicultural Research, 57(5), 615–626. https://doi.org/10.1080/00218839.2018.1494893
Sajid, M., Yasmin, T., Asad, F., & Qamer, S. (2019). Changes in HMF content and diastase activity in honey after heating treatment. Pure and Applied Biology, 8(2), 1668–1674. https://doi.org/10.19045/BSPAB.2019.80109
Shapla, U. M., Solayman, M., Alam, N., Khalil, M. I., & Gan, S. H. (2018). 5-hydroxymethylfurfural (HMF) levels in honey and other food products: Effects on bees and human health. Chemistry Central Journal, 12, 35. https://doi.org/10.1186/s13065-018-0408-3
Siddiqui, A. J., Musharraf, S. G., Choudhary, M. I., & Atta-ur-Rahman. (2017). Application of analytical methods in authentication and adulteration of honey. Food Chemistry, 217, 687–698. https://doi.org/10.1016/j.foodchem.2016.09.001
Suhesti, E., Roni, Y., Yanti, R. N., Ningsih, A. T., & Hadinoto. (2023). Kualitas dan preferensi konsumen terhadap madu lebah Apis mellifera L. dan Apis dorsata F. [Quality and consumer preferences for Apis mellifera L. and Apis dorsata F. honey]. Jurnal Penelitian Hasil Hutan, 41(2), 87–96. https://doi.org/10.55981/jphh.2023.766
Suhesti, E., Zalizar, L., Triwanto, J., Ervayendri, E., Setyobudi, R. H., Waskitho, N. T., Ibrahim, J. T., Maftuchah, M., Hadinoto, H., Vincēviča-Gaile, Z., Tonda, R., Angara, A., Hartono, R., Lestari, S. U., & Pakarti, T. A. (2023). Quality assessment on honey produced from six months old Acacia crassicarpa. In E3S Web of Conferences: The 3rd International Conference on Natural Resources and Life Sciences 2020 (Vol. 374, p. 00012). EDP Sciences. https://doi.org/10.1051/e3sconf/202337400012
Taha, E.-K. A., & AL-Kahtani, S. N. (2020). The relationship between comb age and performance of honey bee (Apis mellifera) colonies. Saudi Journal of Biological Sciences, 27(1), 30–34. https://doi.org/10.1016/j.sjbs.2019.04.005
Taha, E.-K. A., Al-Kahtani, S., & Taha, R. (2021). Comparison of the physicochemical characteristics of sidr (Ziziphus spp.) honey produced by Apis florea F. and Apis mellifera L. Journal of Apicultural Research, 60(3), 470–477. https://doi.org/10.1080/00218839.2020.1746036
Tong, L., Nieh, J. C., & Tosi, S. (2019). Combined nutritional stress and a new systemic pesticide (flupyradifurone, Sivanto®) reduce bee survival, food consumption, flight success, and thermoregulation. Chemosphere, 237, 124408. https://doi.org/10.1016/j.chemosphere.2019.124408
Tornuk, F., Karaman, S., Ozturk, I., Toker, O. S., Tastemur, B., Sagdic, O., Dogan, M., & Kayacier, A. (2013). Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile. Industrial Crops and Products, 46, 124–131. https://doi.org/10.1016/j.indcrop.2012.12.042
Viteri, R., Zacconi, F., Montenegro, G., & Giordano, A. (2021). Bioactive compounds in Apis mellifera monofloral honeys. Journal of Food Science, 86(5), 1552–1582. https://doi.org/10.1111/1750-3841.15706
Vranić, D., Petronijević, R., Stojanović, J. Đ., Korićanac, V., Milijašević, J. B., & Milijašević, M. (2017). Physicochemical properties of honey from Serbia in the period 2014-2016. In IOP Conference Series: Earth and Environmental Science (Vol. 85, No. 1, p. 012058). IOP Publishing. https://doi.org/10.1088/1755-1315/85/1/012058
Wu, M.-C., Wu, C.-Y., Klaithin, K., Tiong, K. K., & Peng, C.-C. (2022). Effect of harvest time span on physicochemical properties, antioxidant, antimicrobial, and anti-inflammatory activities of Meliponinae honey. Journal of the Science of Food and Agriculture, 102(13), 5750–5758. https://doi.org/10.1002/jsfa.11924
ISSN 0128-7702
e-ISSN 2231-8534
Share this article
Recent Articles