e-ISSN 2231-8542
ISSN 1511-3701
Yasir Layth Alrubaye and Badronnisa Yusuf
Pertanika Journal of Tropical Agricultural Science, Volume 29, Issue 1, January 2021
DOI: https://doi.org/10.47836/pjst.29.1.01
Keywords: Irrigation Systems, sub-Irrigation, subsurface irrigation, water movement in soil, wetting patterns
Published on: 22 January 2021
The main purpose of this review is to find the diversity in research studies of subsurface irrigation systems in the past two decades. Two periods of five years were selected to reflect the research studies at the beginning and the end of the comparing periods range. A statistical sorting was used to investigate the distribution of papers according to objectives, types of irrigation systems, research methods, and limitations of the studies. Results showed that the measurements and evaluations were the most presented objectives of the selected papers for both periods. Furthermore, almost 90 percent of the recent papers used multiple research methods, unlike the papers published in the former period which only 56 percent of them used multiple methods. Also, more than 90 percent of the recent papers used a single irrigation system. In conclusion, knowledge of subsurface irrigation systems had been advanced in the former studies mostly by analyzing the measurements and evaluations of the traditional irrigation systems. Unlike the former period, the advancement in knowledge has been produced in the current period by introducing new subsurface irrigation systems and more concentration by the order of measurements, evaluation, and designing, respectively.
Abid, H. N., & Abid, M. B. (2019). Predicting wetting patterns in soil from a single subsurface drip irrigation system. Journal of Engineering, 25(9), 41-53.
Adams, W. R., & Zeleke, K. T. (2017). Diurnal effects on the efficiency of drip irrigation. Irrigation Science, 35(2), 141-157. doi: 10.1007/s00271-016-0529-1
Alazba, A. (1999). Dimensionless advance curves for infiltration families. Agricultural Water Management, 41(2), 115-131. Doi: https://doi.org/10.1016/S0378-3774(98)00113-9
Al-Ghobari, H. M., & Dewidar, A. Z. (2018). Integrating deficit irrigation into surface and subsurface drip irrigation as a strategy to save water in arid regions. Agricultural Water Management, 209, 55-61. doi: https://doi.org/10.1016/j.agwat.2018.07.010
Ali, S., & Ghosh, N. C. (2015). Methodology for the estimation of wetting front length and potential recharge under variable depth of ponding. Journal of Irrigation and Drainage Engineering, 142(1), 04015027. doi: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000921
Amali, S., Rolston, D., Fulton, A., Hanson, B., Phene, C., & Oster, J. (1997). Soil water variability under subsurface drip and furrow irrigation. Irrigation Science, 17(4), 151-155. doi: https://doi.org/10.1007/ s002710050033
Andreu, L., Hopmans, J. W., & Schwankl, L. (1997). Spatial and temporal distribution of soil water balance for a drip-irrigated almond tree. Agricultural Water Management, 35(1-2), 123-146. doi: https://doi. org/10.1016/S0378-3774(97)00018-8
Ayars, J., Fulton, A., & Taylor, B. (2015). Subsurface drip irrigation in California - Here to stay? Agricultural Water Management, 157, 39-47. doi: https://doi.org/10.1016/j.agwat.2015.01.001
Ayars, J., Phene, C., Hutmacher, R., Davis, K., Schoneman, R., Vail, S., & Mead, R. (1999). Subsurface drip irrigation of row crops: a review of 15 years of research at the water management research laboratory. Agricultural Water Management, 42(1), 1-27. doi: https://doi.org/10.1016/S0378-3774(99)00025-6
Azhar, M. A., Nashriyah, M., Hudzairi, M. H., Moneruzzaman, M. K., Amir, H., Rohaizad, M. M., & Ali, A. (2014). Effects of irrigation frequencies on aerial agro-morphological parameters of Dioscorea hispida dennst. (dioscoreaceae). Journal of Applied Science research, 8(9), 27-37.
Barth, H. (1999). Sustainable and effective irrigation through a new subsoil irrigation system (SIS). Agricultural Water Management, 40(2-3), 283-290. doi: https://doi.org/10.1016/S0378-3774(99)00003-7
Bastiaanssen, W. G., Allen, R. G., Droogers, P., D’Urso, G., & Steduto, P. (2007). Twenty-five years modeling irrigated and drained soils: State of the art. Agricultural Water Management, 92(3), 111-125. doi: https:// doi.org/10.1016/j.agwat.2007.05.013
Batchelor, C., Lovell, C., & Murata, M. (1996). Simple microirrigation techniques for improving irrigation efficiency on vegetable gardens. Agricultural Water Management, 32(1), 37-48. doi: https://doi. org/10.1016/S0378-3774(96)01257-7
Burt, C. M., Clemmens, A. J., Strelkoff, T. S., Solomon, K. H., Bliesner, R. D., Hardy, L. A., … & Eisenhauer, D. E. (1997). Irrigation performance measures: efficiency and uniformity. Journal of Irrigation and Drainage Engineering, 123(6), 423-442. doi: https://doi.org/10.1061/(ASCE)0733-9437(1999)125:2(97)
Cai, Y., Wu, P., Zhang, L., Zhu, D., Chen, J., Wu, S., & Zhao, X. (2017). Simulation of soil water movement under subsurface irrigation with porous ceramic emitter. Agricultural Water Management, 192, 244-256. doi: https://doi.org/10.1016/j.agwat.2017.07.004
Cai, Y., Wu, P., Zhang, L., Zhu, D., Wu, S., Zhao, X., … & Dong, Z. (2018). Prediction of flow characteristics and risk assessment of deep percolation by ceramic emitters in loam. Journal of Hydrology, 566, 901-909. doi: https://doi.org/10.1016/j.jhydrol.2018.07.076
Cai, Y., Zhao, X., Wu, P., Zhang, L., Zhu, D., & Chen, J. (2019a). Effect of soil texture on water movement of porous ceramic emitters: A simulation study. Water, 11(1), 1-13. doi: https://doi.org/10.3390/w11010022
Cai, Y., Zhao, X., Wu, P., Zhang, L., Zhu, D., Chen, J., & Lin, L. (2019b). Ceramic patch type subsurface drip irrigation line: Construction and hydraulic properties. Biosystems Engineering, 182, 29-37. doi: https:// doi.org/10.1016/j.biosystemseng.2019.03.005
Camp, C. (1998). Subsurface drip irrigation: A review. Transactions of the ASAE, 41(5), 1353-1367.
Camp, C., Lamm, F., Evans, R., & Phene, C. (2000, November 14-16). Subsurface drip irrigation–Past, present and future. In Proceedings of the 4th Decennial National Irrigation Symposium (pp. 363-372). Phoenix, Arizona.
Castanedo, V., Saucedo, H., & Fuentes, C. (2019). Modeling two-dimensional infiltration with constant and time-variable water depth. Water, 11(2), 1-16. doi: https://doi.org/10.3390/w11020371
Clemmens, A. J., & Burt, C. M. (1997). Accuracy of irrigation efficiency estimates. Journal of Irrigation and Drainage Engineering, 123(6), 443-453. doi: https://doi.org/10.1061/(ASCE)0733-9437(1997)123:6(443)
Coelho, E. F., & Or, D. (1999). Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation. Plant and Soil, 206(2), 123-136. doi: 10.1023/a:1004325219804
Comparini, E., & Mannucci, P. (1997). Penetration of a wetting front in a porous medium interacting with the flow. Nonlinear Differential Equations and Applications NoDEA, 4(3), 425-438. doi: https://doi. org/10.1007/s000300050023
Connell, L. D. (1999). A quasilinear based procedure for saturated/unsaturated water movement in soils. Transport in Porous Media, 36(1), 1-21. doi: 10.1023/a:1006504816562
Dale, M., Ekrann, S., Mykkeltveit, J., & Virnovsky, G. (1997). Effective relative permeabilities and capillary pressure for one-dimensional heterogeneous media. Transport in Porous Media, 26(3), 229-260. doi: https://doi.org/10.1023/A:1006536021302
Dawood, I. A., & Hamad, S. N. (2016). Movement of irrigation water in soil from a surface emitter. Journal of Engineering, 22(9), 103-114.
Ding, Y., Gao, X., Qu, Z., Jia, Y., Hu, M., & Li, C. (2019). Effects of Biochar Application and Irrigation Methods on Soil Temperature in Farmland. Water, 11(3), 1-18. doi: https://doi.org/10.3390/w11030499
Elnesr, M., & Alazba, A. (2019). Computational evaluations of HYDRUS simulations of drip irrigation in 2D and 3D domains (ii-subsurface emitters). Computers and Electronics in Agriculture, 163, 189-205. doi: https://doi.org/10.1016/j.compag.2019.03.035
Esfandiari, M., & Maheshwari, B. (1997). Application of the optimization method for estimating infiltration characteristics in furrow irrigation and its comparison with other methods. Agricultural Water Management, 34(2), 169-185. doi: https://doi.org/10.1016/S0378-3774(97)00007-3
Fan, W., & Li, G. (2018). Effect of soil properties on Hydraulic characteristics under subsurface drip irrigation. IOP Conference Series: Earth and Environmental Science, 121(5), 1-12. doi: https://doi.org/10.1088/1755- 1315/121/5/052042
Fan, Y. W., Huang, N., Zhang, J., & Zhao, T. (2018a). Simulation of soil wetting pattern of vertical moistube-irrigation. Water, 10(5), 1-19. doi: https://doi.org/10.3390/w10050601
Fan, Y., Huang, N., Gong, J., Shao, X., Zhang, J., & Zhao, T. (2018b). A simplified infiltration model for predicting cumulative infiltration during vertical line source irrigation. Water, 10(1), 1-12. doi: https:// doi.org/10.3390/w10010089
Felsot, A., Cone, W., Yu, J., & Ruppert, J. (1998). Distribution of imidacloprid in soil following subsurface drip chemigation. Bulletin of Environmental Contamination and Toxicology, 60(3), 363-370.
Feng, G., Zhang, Z., Wan, C., Lu, P., & Bakour, A. (2017). Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agricultural Water Management, 193, 205-213. doi: https://doi.org/10.1016/j.agwat.2017.07.026
Fernández-Gálvez, J., Pollacco, J., Lassabatere, L., Angulo-Jaramillo, R., & Carrick, S. (2019). A general beerkan estimation of soil transfer parameters method predicting hydraulic parameters of any unimodal water retention and hydraulic conductivity curves: Application to the kosugi soil hydraulic model without using particle size distribution data. Advances in Water Resources, 129, 118-130. doi: https:// doi.org/10.1016/j.advwatres.2019.05.005
Furati, K. M. (1997). Effects of relative permeability history dependence on two-phase flow in porous media. Transport in Porous Media, 28(2), 181-203. doi:10.1023/a:1006556018950
Furman, A. (2008). Modeling coupled surface-subsurface flow processes: A review. Vadose Zone Journal, 7(2), 741-756. doi: https://doi.org/10.2136/vzj2007.0065
Ghanem, R., & Dham, S. (1998). Stochastic finite element analysis for multiphase flow in heterogeneous porous media. Transport in Porous Media, 32(3), 239-262. doi:10.1023/a:1006514109327
Ghazouani, H., Rallo, G., Mguidiche, A., Latrech, B., Douh, B., Boujelben, A., & Provenzano, G. (2019). Assessing Hydrus-2D model to investigate the effects of different on-farm irrigation strategies on potato crop under subsurface drip irrigation. Water, 11(3), 1-18. doi: https://doi.org/10.3390/w11030540
Grecco, K. L., de Miranda, J. H., Silveira, L. K., & van Genuchten, M. T. (2019). HYDRUS-2D simulations of water and potassium movement in drip irrigated tropical soil container cultivated with sugarcane. Agricultural Water Management, 221, 334-347. doi: https://doi.org/10.1016/j.agwat.2019.05.010
Gu, J., Yin, G., Huang, P., Guo, J., & Chen, L. (2017). An improved back propagation neural network prediction model for subsurface drip irrigation system. Computers and Electrical Engineering, 60, 58-65. doi: https:// doi.org/10.1016/j.compeleceng.2017.02.016
Gunarathna, M., Sakai, K., Nakandakari, T., Kazuro, M., Onodera, T., Kaneshiro, H., … & Wakasugi, K. (2017). Optimized subsurface irrigation system (OPSIS): Beyond traditional subsurface irrigation. Water, 9(8), 1-11. doi: https://doi.org/10.3390/w9080599
Gunarathna, M., Sakai, K., Nakandakari, T., Momii, K., Onodera, T., Kaneshiro, H., … & Wakasugi, K. (2018). Optimized subsurface irrigation system: The future of sugarcane irrigation. Water, 10(3), 1-14. doi: https://doi.org/10.3390/w10030314
Han, M., Zhao, C., Feng, G., Yan, Y., & Sheng, Y. (2015). Evaluating the effects of mulch and irrigation amount on soil water distribution and root zone water balance using HYDRUS-2D. Water, 7(6), 2622-2640. doi: https://doi.org/10.3390/w7062622
Hansona, B., Schwankl, L., Schulbach, K., & Pettygrove, G. (1997). A comparison of furrow, surface drip, and subsurface drip irrigation on lettuce yield and applied water. Agricultural Water Management, 33(2-3), 139-157. doi: https://doi.org/10.1016/S0378-3774(96)01289-9
Hantush, M. M., & Marino, M. A. (1989). Chance-constrained model for management of stream-aquifer system. Journal of Water Resources Planning and Management, 115(3), 259-277. doi: https://doi.org/10.1061/ (ASCE)0733-9496(1989)115:3(259)
Hatiye, S. D., Hari Prasad, K., & Ojha, C. (2018). Deep percolation under irrigated water-intensive crops. Journal of Irrigation and Drainage Engineering, 144(8), 1-13. doi: https://doi.org/10.1061/(ASCE) IR.1943-4774.0001326
Hilfer, R., & Øren, P. (1996). Dimensional analysis of pore scale and field scale immiscible displacement. Transport in Porous Media, 22(1), 53-72. doi: https://doi.org/10.1007/BF00974311
Honari, M., Ashrafzadeh, A., Khaledian, M., Vazifedoust, M., & Mailhol, J. (2017). Comparison of HYDRUS- 3D soil moisture simulations of subsurface drip irrigation with experimental observations in the south of France. Journal of Irrigation and Drainage Engineering, 143(7), 1-7. doi: https://doi.org/10.1061/ (ASCE)IR.1943-4774.0001188
Huang, G., & Loucks, D. P. (2000). An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering Systems, 17(2), 95-118. doi: https://doi. org/10.1080/02630250008970277
Huang, Y., Huang, G., Liu, D., Zhu, H., & Sun, W. (2012). Simulation-based inexact chance-constrained nonlinear programming for eutrophication management in the Xiangxi Bay of Three Gorges Reservoir. Journal of Environmental Management, 108, 54-65. doi: https://doi.org/10.1016/j.jenvman.2012.04.037
Hudzari, R., Noorman, M., Asimi, M., Atar, M., & Nashriyah, M. (2013). Engineering technological in agriculture research and education. Advanced Materials Research, 705, 493-498. doi: https://doi. org/10.4028/www.scientific.net/AMR.705.493
Izadi, B., King, B., Westermann, D., & McCann, I. (1996). Modeling transport of bromide in furrow-irrigated field. Journal of Irrigation and Drainage Engineering, 122(2), 90-96. doi: https://doi.org/10.1061/ (ASCE)0733-9437(1996)122:2(90)
Jiang, X. J., Chen, C., Zhu, X., Zakari, S., Singh, A. K., Zhang, W., … & Yu, S. (2019). Use of dye infiltration experiments and HYDRUS-3D to interpret preferential flow in soil in a rubber-based agroforestry systems in Xishuangbanna, China. Catena, 178, 120-131. doi: https://doi.org/10.1016/j.catena.2019.03.015
Kacimov, A., Obnosov, Y. V., & Šimůnek, J. (2018). Steady flow from an array of subsurface emitters: Kornev’s irrigation technology and Kidder’s free boundary problems revisited. Transport in Porous Media, 121(3), 643-664. doi: https://doi.org/10.1007/s11242-017-0978-x
Kandil, H., Skaggs, R., Dayem, S. A., & Aiad, Y. (1995). DRAINMOD-S: Water management model for irrigated arid lands, crop yield and applications. Irrigation and Drainage Systems, 9(3), 239-258. doi: https://doi.org/10.1007/BF00880866
Kapoor, V. (1996). Criterion for instability of steady-state unsaturated flows. Transport in Porous Media, 25(3), 313-334. doi: https://doi.org/10.1007/BF00140986
Kerkides, P., Poulovassilis, A., Argyrokastritis, I., & Elmaloglou, S. (1997). Comparative evaluation of analytic solutions in predicting soil moisture profiles in vertical one-dimensional infiltration under ponded and constant flux boundary conditions. Water Resources Management, 11(5), 323-338. doi:10.1023/a:1007978714468
Khalil, L. A., & Abid, M. B. (2019). Numerical simulation of unsaturated soil water from a trickle irrigation system for sandy loam soils. Journal of Engineering, 25(3), 38-52. doi: https://doi.org/10.31026/j. eng.2019.03.04
Kite, G., & Droogers, P. (2000). Comparing evapotranspiration estimates from satellites, hydrological models and field data. Journal of Hydrology, 229(1-2), 3-18. doi: https://doi.org/10.1016/S0022-1694(99)00195-X
Lacroix, M., Wang, H., & Blavoux, B. (1996). Water-table modelling to estimate irrigation losses: application to the Lower Durance, France. Agricultural Water Management, 30(3), 283-300. doi: https://doi. org/10.1016/0378-3774(95)01227-3
Li, P., Tan, H., Wang, J., Cao, X., & Yang, P. (2019). Evaluation of water uptake and root distribution of cherry trees under different irrigation methods. Water, 11(3), 1-18. doi: https://doi.org/10.3390/w11030495
Lima, V., Keitel, C., Sutton, B., & Leslie, G. (2019). Improved water management using subsurface membrane irrigation during cultivation of Phaseolus vulgaris. Agricultural Water Management, 223, 1-11. doi: https:// doi.org/10.1016/j.agwat.2019.105730
Liu, Y., Zhou, Y., Wang, T., Pan, J., Zhou, B., Muhammad, T., … & Li, Y. (2019). Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality. Journal of Cleaner Production, 222, 835-843. doi: https://doi.org/10.1016/j.jclepro.2019.02.208
Lockington, D., & Parlange, J. Y. (1995). Approximate formulae for the wetting front position and boundary water content during horizontal infiltration. Transport in Porous Media, 18(2), 95-105. doi: https://doi. org/10.1007/BF01064673
Loucks, D. P., Stedinger, J. R., & Haith, D. A. (1981). Water resource systems planning and analysis. Englewood Cliffs, New Jersey: Prentice-Hall.
Mantoglou, A. (2003). Pumping management of coastal aquifers using analytical models of saltwater intrusion. Water Resources Research, 39(12), 1-12. doi: https://doi.org/10.1029/2002WR001891
Martínez de Azagra Paredes, A., & Del Río San José, J. (2019). Pitcher Irrigation: Some Theoretical and Practical Aspects. Irrigation and Drainage, 68(3), 542-550. doi: https://doi.org/10.1002/ird.2330
Massatbayev, K., Izbassov, N., Nurabaev, D., Musabekov, K., Shomantayev, A., & Massatbayev, M. (2016). Technology and regime of sugar beet drip irrigation with plastic mulching under the conditions of the jambyl region. Irrigation and Drainage, 65(5), 620-630. doi: https://doi.org/10.1002/ird.2084
Matanga, G. B., & Mariño, M. A. (1979). Irrigation planning: 1. Cropping pattern. Water Resources Research, 15(3), 672-678. doi: https://doi.org/10.1029/WR015i003p00672
McClymont, D., & Smith, R. (1996). Infiltration parameters from optimisation on furrow irrigation advance data. Irrigation Science, 17(1), 15-22.
Meshkat, M., Warner, R. C., & Workman, S. R. (1999). Modeling of evaporation reduction in drip irrigation system. Journal of Irrigation and Drainage Engineering, 125(6), 315-323. doi: https://doi.org/10.1061/ (ASCE)0733-9437(1999)125:6(315)
Montazar, A., Zaccaria, D., Bali, K., & Putnam, D. (2017). A model to assess the economic viability of alfalfa production under subsurface drip irrigation in California. Irrigation and Drainage, 66(1), 90-102. doi: https://doi.org/10.1002/ird.2091
Naghedifar, S. M., Ziaei, A. N., Playán, E., Zapata, N., Ansari, H., & Hasheminia, S. M. (2019). A 2D curvilinear coupled surface–subsurface flow model for simulation of basin/border irrigation: theory, validation and application. Irrigation Science, 37(2), 151-168. doi: https://doi.org/10.1007/s00271-018-0609-5
Oad, R., & Sampath, R. (1995). Performance measure for improving irrigation management. Irrigation and Drainage Systems, 9(4), 357-370.
Panda, S., Khepar, S., & Kaushal, M. (1996). Interseasonal irrigation system planning for waterlogged sodic soils. Journal of Irrigation and Drainage Engineering, 122(3), 135-144. doi: https://doi.org/10.1061/ (ASCE)0733-9437(1996)122:3(135)
Parlange, J. Y., Hogarth, W., Parlange, M., Haverkamp, R., Barry, D. A., Ross, P., & Steenhuis, T. (1998). Approximate analytical solution of the nonlinear diffusion equation for arbitrary boundary conditions. Transport in Porous Media, 30(1), 45-55. doi: https://doi.org/10.1023/A:1006508721609
Parseval, Y. D., Pillai, K. M., & Advani, S. G. (1997). A simple model for the variation of permeability due to partial saturation in dual scale porous media. Transport in Porous Media, 27(3), 243-264. doi:10.1023/a:1006544107324
Qiu, Z., Li, J., & Zhao, W. (2017). Effect of applying sewage effluent with subsurface drip irrigation on soil enzyme activities during the maize growing season. Irrigation and Drainage, 66(5), 723-737. doi: https:// doi.org/10.1002/ird.2124
Razali, M. H., Roslan, S., Halim, A. S. M. A., Shokeri, A. F. M., & Husin, N. A. (2016). Design and Development of Innovative Highland Water Filtration System. World Journal of Engineering and Technology, 4(3), 383-390. doi: 10.4236/wjet.2016.43037
Ren, C., Zhao, Y., Dan, B., Wang, J., Gong, J., & He, G. (2018). Lateral hydraulic performance of subsurface drip irrigation based on spatial variability of soil: Experiment. Agricultural Water Management, 204, 118-125. doi: https://doi.org/10.1016/j.agwat.2018.03.034
Ren, C., Zhao, Y., Wang, J., Bai, D., Zhao, X., & Tian, J. (2017). Lateral hydraulic performance of subsurface drip irrigation based on spatial variability of soil: Simulation. Agricultural Water Management, 193, 232-239. doi: https://doi.org/10.1016/j.agwat.2017.08.014
Reyes-Esteves, R. G., & Slack, D. C. (2019). Modeling approaches for determining appropriate depth of subsurface drip irrigation tubing in alfalfa. Journal of Irrigation and Drainage Engineering, 145(10), 1-7. doi: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001409
Rimmer, A., Parlange, J. Y., Steenhuis, T. S., Darnault, C., & Condit, W. (1996). Wetting and nonwetting fluid displacements in porous media. Transport in Porous Media, 25(2), 205-215. doi: https://doi.org/10.1007/ BF00135856
Ross, P., Haverkamp, R., & Parlange, J. Y. (1996). Calculating parameters for infiltration equations from soil hydraulic functions. Transport in Porous Media, 24(3), 315-339. doi: https://doi.org/10.1007/BF00154096
Ross, P., Parlange, J. Y., & Haverkamp, R. (1995). Two-dimensional interaction of a wetting front with an impervious layer: Analytical and numerical solutions. Transport in Porous Media, 20(3), 251-263. doi: https://doi.org/10.1007/BF01073175
Rudnick, D., Irmak, S., West, C., Chávez, J., Kisekka, I., Marek, T., … & Djaman, K. (2019). Deficit irrigation management of maize in the High Plains Aquifer Region: A review. JAWRA Journal of the American Water Resources Association, 55(1), 38-55. doi: https://doi.org/10.1111/1752-1688.12723
Saefuddin, R., Saito, H., & Šimůnek, J. (2019). Experimental and numerical evaluation of a ring-shaped emitter for subsurface irrigation. Agricultural Water Management, 211, 111-122. doi: https://doi.org/10.1016/j. agwat.2018.09.039
Sakaguchi, A., Yanai, Y., & Sasaki, H. (2019). Subsurface irrigation system design for vegetable production using HYDRUS-2D. Agricultural Water Management, 219, 12-18. doi: https://doi.org/10.1016/j. agwat.2019.04.003
Scaloppi, E. J., Merkley, G. P., & Willardson, L. S. (1995). Intake parameters from advance and wetting phases of surface irrigation. Journal of Irrigation and Drainage Engineering, 121(1), 57-70. doi: https://doi. org/10.1061/(ASCE)0733-9437(1995)121:1(57)
Shani, U., Xue, S., Gordin-Katz, R., & Warrick, A. (1996). Soil-limiting flow from subsurface emitters. I: Pressure measurements. Journal of Irrigation and Drainage Engineering, 122(5), 291-295. doi: https:// doi.org/10.1061/(ASCE)0733-9437(1996)122:5(291)
Singh, A. (2013). Groundwater modelling for the assessment of water management alternatives. Journal of Hydrology, 481, 220-229. doi: https://doi.org/10.1016/j.jhydrol.2012.12.042
Singh, A. (2014a). Irrigation planning and management through optimization modelling. Water Resources Management, 28(1), 1-14. doi: https://doi.org/10.1007/s11269-013-0469-y
Singh, A. (2014b). Optimizing the use of land and water resources for maximizing farm income by mitigating the hydrological imbalances. Journal of Hydrologic Engineering, 19(7), 1447-1451. doi: https://doi. org/10.1061/(ASCE)HE.1943-5584.0000924
Singh, A. (2014c). Simulation–optimization modeling for conjunctive water use management. Agricultural Water Management, 141, 23-29. doi: https://doi.org/10.1016/j.agwat.2014.04.003
Singh, B., Boivin, J., Kirkpatrick, G., & Hum, B. (1995). Automatic irrigation scheduling system (AISSUM): Principles and applications. Journal of Irrigation and Drainage Engineering, 121(1), 43-56. doi: https:// doi.org/10.1061/(ASCE)0733-9437(1995)121:1(43)
Snyder, R., Plas, M., & Grieshop, J. (1996). Irrigation methods used in California: Grower survey. Journal of Irrigation and Drainage Engineering, 122(4), 259-262. doi: https://doi.org/10.1061/(ASCE)0733- 9437(1996)122:4(259)
Soulis, K. X., & Elmaloglou, S. (2016). Optimum soil water content sensors placement in drip irrigation scheduling systems: Concept of time stable representative positions. Journal of Irrigation and Drainage Engineering, 142(11), 1-9. doi: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001093
Tabari, M. M. R., & Soltani, J. (2013). Multi-objective optimal model for conjunctive use management using SGAs and NSGA-II models. Water Resources Management, 27(1), 37-53. doi: https://doi.org/10.1007/ s11269-012-0153-7
Valiantzas, J. D. (1997). Surface irrigation advance equation: Variation of subsurface shape factor. Journal of Irrigation and Drainage Engineering, 123(4), 300-306. doi: 10.1061/(ASCE)0733-9437(1997)123:4(300)
Varshney, R. S. (1995). Modern methods of irrigation. GeoJournal, 35(1), 59-63.
Warrick, A., & Shani, U. (1996). Soil-limiting flow from subsurface emitters. II: Effect on uniformity. Journal of Irrigation and Drainage Engineering, 122(5), 296-300. doi: https://doi.org/10.1061/(ASCE)0733- 9437(1996)122:5(296)
Willis, T. M., Black, A. S., & Meyer, W. S. (1997). Estimates of deep percolation beneath cotton in the Macquarie Valley. Irrigation Science, 17(4), 141-150. doi: https://doi.org/10.1007/s002710050032
Witelski, T. P. (1997). Perturbation analysis for wetting fronts in Richard’s Equation. Transport in Porous Media, 27(2), 121-134. doi: https://doi.org/10.1023/A:1006513009125
Zhang, H., Liu, H., Sun, C., Gao, Y., Gong, X., Sun, J., & Wang, W. (2017). Root development of transplanted cotton and simulation of soil water movement under different irrigation methods. Water, 9(7), 1-21. doi: https://doi.org/10.3390/w9070503
Zheng, C., Lu, Y., Guo, X., Li, H., Sai, J., & Liu, X. (2017). Application of HYDRUS-1D model for research on irrigation infiltration characteristics in arid oasis of northwest China. Environmental Earth Sciences, 76(23), 785-795. doi: https://doi.org/10.1007/s12665-017-7151-2
ISSN 1511-3701
e-ISSN 2231-8542