e-ISSN 2231-8542
ISSN 1511-3701
Ahmed Abdulkareem Najm, Ahmad Azfaralarriff, Herryawan Ryadi Eziwar Dyari, Sharifah Sakinah Syed Alwi, Nahid Khalili, Babul Airianah Othman, Douglas Law, Muhammad Shahid and Shazrul Fazry
Pertanika Journal of Tropical Agricultural Science, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.18
Keywords: Antimicrobial peptides, antitumor activity, fish, medicinal agents
Published on: 1 April 2022
Fish is a potential source of various forms of bioactive compounds. It can be used as a source of specific proteins, especially in medicine. Recently, studies related to the use of antimicrobial peptides (AMPs) from fish are being carried out to find an alternative cure for cancer. To achieve this objective, the AMP used must meet a condition where it possesses the ability to target tumor cells without affecting the normal cell. Therefore, this study aims to systematically review and classify the recent AMPs isolated from fish and their therapeutic activities, focusing on their anticancer and antimicrobial activities. A systematic review of studies published in English between 2017 and 2020 was conducted in PubMed NCBI, Biomed Central, Science Direct, and Google Scholar databases using keywords and inclusion and exclusion criteria. A systematic review conducted has identified 38 potential AMPs isolated from fish that have been reported to have antimicrobials activity. Of all of these, 21 AMPs also have anticancer properties. Therefore, it is important to continue to explore and study natural ingredients in developing new approaches in medicine. This research is essential to enable the potential of AMPs to be identified and applied.
Abuine, R., Rathnayake, A. U., & Byun, H. G. (2019). Biological activity of peptides purified from fish skin hydrolysates. Fisheries and Aquatic Sciences, 22(1), 1-14. https://doi.org/10.1186/s41240-019-0125-4
Acosta, J., Roa, F., González-Chavarría, I., Astuya, A., Maura, R., Montesino, R., Muñoz, C., Camacho, F., Saavedra, P., Valenzuela, A., Sánchez, O., & Toledo, J. R. (2019). In vitro immunomodulatory activities of peptides derived from Salmo salar NK-lysin and cathelicidin in fish cells. Fish and Shellfish Immunology, 88, 587-594. https://doi.org/10.1016/j.fsi.2019.03.034
Anju, A., Smitha, C. K., Preetha, K., Boobal, R., & Rosamma, P. (2019). Molecular characterization, recombinant expression and bioactivity profile of an antimicrobial peptide, Ss-arasin from the Indian mud crab, Scylla serrata. Fish and Shellfish Immunology, 88, 352-358. https://doi.org/10.1016/j.fsi.2019.03.007
Ardeshir, R. A., Rastgar, S., Morakabati, P., Mojiri-Forushani, H., Movahedinia, A., & Salati, A. P. (2020). Selective induced apoptosis and cell cycle arrest in MCF7 and LNCap cell lines by skin mucus from round goby (Neogobius melanostomus) and common carp (Cyprinus carpio) through P53 expression. Cytotechnology, 72(3), 367-376. https://doi.org/10.1007/s10616-020-00383-x
Bhandari, D., & Rafiq, S., Gat, Y., Gat, P., Waghmare, R., & Kumar, V. (2020). A review on bioactive peptides: Physiological functions, bioavailability and safety. International Journal of Peptide Research and Therapeutics, 26, 139-150. https://doi.org/10.1007/s10989-019-09823-5
Bo, J., Yang, Y., Zheng, R., Fang, C., Jiang, Y., Liu, J., Chen, M., Hong, F., Bailey, C., Segner, H., & Wang, K. (2019). Antimicrobial activity and mechanisms of multiple antimicrobial peptides isolated from rockfish Sebastiscus marmoratus. Fish and Shellfish Immunology, 93, 1007-1017. https://doi.org/10.1016/j.fsi.2019.08.054
Boparai, J. K., & Sharma, P. K. (2019). Mini review on antimicrobial peptides, sources, mechanism and recent applications. Protein Peptide Letter, 27(1), 4-16. https//doi.org/ 10.2174/0929866526666190822165812
Buonocore, F., Picchietti, S., Porcelli, F., Pelle, G. D., Olivieri, C., Poerio, E., Bugli, F., Menchinelli, G., Snaguinetti, M., Bresciani, A., Gannari, N., Taddei, A. R., Fausto, A. M., & Scapiliati, G. (2019). Fish-derived antimicrobial peptides: Activity of a chionodracine mutant against bacterial models and human bacterial pathogens. Developmental & Comparative Immunology, 96, 9-17. https://doi.org/10.1016/j.dci.2019.02.012
Chang, S. M., Matchar, D. B., Smetana, G. W., & Umscheid, C. A. (Eds.). (2012). Methods guide for medical test reviews. Agency for Healthcare Research and Quality (US).
Chaturvedi, P., Bhat, R. A. H., & Pande, A. (2020). Antimicrobial peptides of fish: Innocuous alternatives to antibiotics. Reviews in Aquaculture, 12(1), 85-106. https://doi.org/10.1111/raq.12306
Chee, P. Y., Mang, M., Lau, E. S., Tan, L. T., He, Y. W., Lee, W. L., Pusparajah, P., Chan, K. G., Lee, L. H., & Goh, B. H. (2019). Epinecidin-1, an antimicrobial peptide derived from Grouper (Epinephelus coioides): Pharmacological activities and applications. Frontiers In Microbiology, 10, Article 2631. https://doi.org/10.3389/fmicb.2019.02631
Cheng, M. H., Pan, C. Y., Chen, N. F., Yang, S. N., Hsieh, S., Wen, Z. H., Chen, W. F., Wang, J. W., Lu, W. H., & Kuo, H. M. (2020). Piscidin-1 induces apoptosis via mitochondrial reactive oxygen species-regulated mitochondrial dysfunction in human osteosarcoma cells. Scientific Reports, 10(1), Article 5045. https://doi.org/10.1038/s41598-020-61876-5
Cipolari, O. C., de Oliveira Neto, X. A., & Conceição, K. (2020) Fish bioactive peptides: A systematic review focused on sting and skin. Aquaculture, 515, Article 734598. https://doi.org/10.1016/j.aquaculture.2019.734598
Deslouches, B., & Di, Y. P. (2017). Antimicrobial peptides with selective antitumor mechanisms: Prospect for anticancer applications. Oncotarget, 8(28), 46635-46651. https://doi.org/10.18632/oncotarget.16743
Devi, N. P., Das, S. K., Sanjukta, R. K., & Singh, S. G. (2019). A comparative study on antibacterial activity of integumentary extract of selected freshwater fish species and neem extracts against gram-positive and gram-negative bacteria. Journal of Entomology and Zoology Studies, 7(2), 1352-1355.
Felício, M. R., Silva, O. N., Gonçalves, S., Santos, N. C., & Franco, O. L. (2017). Peptides with dual antimicrobial and anticancer activities. Frontiers in Chemistry, 5(5), 1-9. https//doi.org/10.3389/fchem.2017.00005
Hansen, I., Isaksson, J., Poth, A. G., Hansen, K. Ø., Andersen, A., Richard, C., Blencke, H. M., Stensvåg, K., Craik, D. J., & Haug, T. (2020). Isolation and characterization of antimicrobial peptides with unusual disulfide connectivity from the colonial ascidian Synoicum turgens. Marine Drugs, 18(1), Article 51. https://doi.org/10.3390/md18010051
Hazam, P. K., & Chen. J. H. (2020). Therapeutic utility of the antimicrobial peptide Tilapia Piscidin 4 (TP4). Aquaculture Reports 17, Article 100409. https://doi.org/10.1016/j.aqrep.2020.100409
Kang, H. K., Choi, M. C., Seo, C. H., & Park, Y. (2018). Therapeutic properties and biological benefits of marine-derived anticancer peptides. International Journal of Molecular Sciences, 19(3), Article 919. https://doi.org/10.3390/ijms19030919
Kumar, P., Rajeshwaran, T., Priya, P., Kailasam, M., Biswas, G., Ghosal, T. K., Vijayan, K. K., & Arasu, A. R. T. (2019). Comparative immunological and biochemical properties of the epidermal mucus from three brackishwater fishes. Proceedings of the National Academy of Sciences, India Section B: Biological, 89(1), 95-103. https://doi.org/10.1007/s40011-017-0923-3
Kunda N. K. (2020). Antimicrobial peptides as novel therapeutics for non-small cell lung cancer. Drug Discovery Today, 25(1), 238-247. https://doi.org/10.1016/j.drudis.2019.11.012
Kuo, H. M., Tseng, C. C., Chen, N. F., Tai, M. H., Hung, H. C., Feng, C. W., Cheng, S. Y., Huang, S. Y., Jean, Y. H., & Wen, Z. H. (2018). MSP-4, an antimicrobial peptide, induces apoptosis via activation of extrinsic Fas/FasL- and intrinsic mitochondria-mediated pathways in one osteosarcoma cell line. Marine Drugs, 16(1), Article 8. https://doi.org/10.3390/md16010008
León, R., Ruiz, M., Valero, Y., Cardenas, F., Guzman, F., Vila, M., & Cuesta, A. (2020). Exploring small cationic peptides of different origin as potential antimicrobial agents in aquaculture. Fish Shellfish Immunollogy, 98, 720-727. https//doi.org/10.1016/j.fsi.2019.11.019
Lirio, G. A. C., De Leon, J. A. A., & Villafuerte, A. G. (2019). Antimicrobial activity of epidermal mucus from top aquaculture fish species against medically-important pathogens. Walailak Journal of Science and Technology, 16(5), 329-340. https://doi.org/10.48048/wjst.2019.6287
Lugo, J. M., Tafalla, C., Oliva, A., Pons, T., Oliva, B., Aquilino, C., Morales, R., & Estrada, M. P. (2019). Evidence for antimicrobial and anticancer activity of pituitary adenylate cyclase-activating polypeptide (PACAP) from North African catfish (Clarias gariepinus): Its potential use as novel therapeutic agent in fish and humans. Fish Shellfish Immunology, 86, 559-570. https://doi.org/10.1016/j.fsi.2018.11.056
Marqus, S., Pirogova, E., & Piva, T. J. (2017). Evaluation of the use of therapeutic peptides for cancer treatment. Journal of Biomedical Sciences, 24(1), 1-15. https://doi.org/10.1186/s12929-017-0328-x
Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ, 339, Article b2535. https://doi.org/10.1136/bmj.b2535
Munn, Z., Moola, S., Lisy, K., Riitano, D., & Tufanaru, C. (2015). Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. International Journal of Evidence-based Healthcare, 13(3), 147-153. https://doi.org/10.1097/XEB.0000000000000054
Neshani, A., Zare, H., Eidgahi, M. R. A., Chichaklu, A. H., Movaqar, A., & Ghazvini, K. (2019). Review of antimicrobial peptides with anti‐Helicobacter pylori activity. Helicobacter, 24(1), Article e12555. http://dx.doi.org/10.1111/hel.12555
Nurdiani, R., Dissanayake, M., Street, W. E., Donkor, O. N., Singh, T. K., &. Vasiljevic, T. (2016). In vitro study of selected physiological and physicochemical properties of fish protein hydrolysates from 4 Australian fish species. International Food Research Journal, 23( 5), 2029-2040.
Offret, C., Jégou, C., Mounier, J., Fleury, Y., & Le Chevalier, P. (2019). New insights into the haemo- and coelo-microbiota with antimicrobial activities from Echinodermata and Mollusca. Journal of Applied Microbiology, 126(4), 1023-1031. https://doi.org/10.1111/jam.14184
Pan, C. Y., Tsai, T. Y., Su, B. C., Hui, C. F., & Chen, J. Y. (2017). Study of the antimicrobial activity of Tilapia Piscidin 3 (TP3) and TP4 and their effects on immune functions in hybrid Tilapia (Oreochromis spp.). PloS One, 12(1), Article e0169678. https://doi.org/10.1371/journal.pone.0169678
Raju, V. S., Sarkar, P., Pachaiappan, R., Paray, B. A., Al-Sadoon, M. K., & Arockiaraj, J. (2020). Defense involvement of piscidin from striped murrel Channa striatus and its peptides CsRG12 and CsLC11 involvement in an antimicrobial and antibiofilm activity. Fish and Shellfish Immunology, 99, 368-378. https://doi.org/10.1016/j.fsi.2020.02.027
Russell, C. K., & Gregory, D. M. (2003). Evaluation of qualitative research studies. Evidence-Based Nursing, 6(2), 36-40. http://dx.doi.org/10.1136/ebn.6.2.36
Shabir, U., Ali, S., Magray, A. R., Ganai, B. A., Firdous, P., Hassan, T., & Nazir, R. (2018). Fish antimicrobial peptides (AMP’s) as essential and promising molecular therapeutic agents: A review. Microbial Pathogenesis, 114, 50-56. https://doi.org/10.1016/j.micpath.2017.11.039
Sruthy, K. S., Nair, A., Antony, S. P., Puthumana, J., Singh, I., & Philip, R. (2019). A histone H2A derived antimicrobial peptide, Fi-Histin from the Indian white shrimp, Fenneropenaeus indicus: Molecular and functional characterization. Fish and Shellfish Immunology, 92, 667-679. https://doi.org/10.1016/j.fsi.2019.06.044
Uen, W. C., Choong, C. Y., Tai, C. J., & Tai, C. J. (2019). Pardaxin promoted differentiation and maturation of leukemic cells via regulating TLR2/MyD88 signal against cell proliferation. Evidence-based Complementary and Alternative Medicine, 2019, Article 7035087. https://doi.org/10.1155/2019/7035087
Valero, Y., Saraiva-Fraga, M., Costas, B., & Guardiola, F. A. (2020). Antimicrobial peptides from fish: Beyond the fight against pathogens. Reviews in Aquaculture, 12, 224-253. https://doi.org/10.1111/raq.12314
Varier, K. M., Chinnasamy, A., Gajendran, B., & Nagarathnam, R. (2018). Isolation and characterization of a novel anticancer muscle protein from edible marine catfish tachysurus dussumeiri. International Journal of Pharmaceutical Sciences and Research, 9(7), 2720-2730. https://doi.org/10.13040/IJPSR.0975-8232.9(7).2720-30
Walsh, D., & Downe, S. (2006). Appraising the quality of qualitative research. Midwifery, 22(2), 108-119. https://doi.org/10.1016/j.midw.2005.05.004
Wang, J., Dou, X., Song, J., Lyu, Y., Zhu, X., Li, W., & Shan, A. (2018). Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Medicinal Research Reviews, 39(3), 831-859. https://doi.org/10.1002/med.21542
Wang, X., Yu, H., Xing, R., & Li, P. (2017). Characterization, preparation, and purification of marine bioactive peptides. Biomed Research International, 2017, Article 9746720. https://doi.org/10.1155/2017/9746720
ISSN 1511-3701
e-ISSN 2231-8542