e-ISSN 2231-8542
ISSN 1511-3701
J
Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Byrappa, K., & Yoshimura, M. (2012). Handbook of Hydrothermal Technology (2nd Ed.). William Andrew.
Brunner, G. (2014). Reactions in hydrothermal and supercritical water. Supercritical Fluid Science and Technology, 5, 265-322. https://doi.org/10.1016/B978-0-444-59413-6.00005-4
Carr, A. G., Mammucari, R., & Foster, N. R. (2011). A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chemical Engineering Journal, 172(1), 1-17. https://doi.org/10.1016/j.cej.2011.06.007
Chaudhary, A., Dwivedi, A., & Upadhyayula, S. (2021). Supercritical fluids as green solvents. In Handbook of Greener Synthesis of Nanomaterials and Compounds (pp. 891-916). Elsevier. https://doi.org/10.1016/B978-0-12-821938-6.00028-1
Cocero, M. J. (2018). Supercritical water processes: Future prospects. The Journal of Supercritical Fluids, 134, 124-132. https://doi.org/10.1016/j.supflu.2017.11.018
Croiset, E., Rice, S. F., & Hanush, R. G. (1997). Hydrogen peroxide decomposition in supercritical water. AIChE Journal, 43(9), 2343-2352. https://doi.org/10.1002/aic.690430919
Daud, A. R. M., Berrueco, C., Hellgardt, K., Millan, M., & Kandiyoti, R. (2021). Oxidative cracking of three to five-member ring polycyclic aromatic hydrocarbons in subcritical and supercritical water. The Journal of Supercritical Fluids, 167, Article 105050. https://doi.org/10.1016/j.supflu.2020.105050
Dunn, J. B., & Savage, P. E. (2002). Terephthalic acid synthesis in high-temperature liquid water. Industrial & Engineering Chemistry Research, 41(18), 4460-4465. https://doi.org/10.1021/ie0107789
Dunn, J. B., Burns, M. L., Hunter, S. E., & Savage, P. E. (2003). Hydrothermal stability of aromatic carboxylic acids. The Journal of Supercritical Fluids, 27(3), 263-274. https://doi.org/10.1016/S0896-8446(02)00241-3
Dunn, J. B., & Savage, P. E. (2005). High-temperature liquid water: A viable medium for terephthalic acid synthesis. Environmental Science & Technology, 39(14), 5427-5435. https://doi.org/10.1021/es048575+
Eckert, C. A., & Chandler, K. (1998). Tuning fluid solvents for chemical reactions. The Journal of Supercritical Fluids, 13(1-3), 187-195. https://doi.org/10.1016/S0896-8446(98)00051-5
Falcon, H., Campos-Martin, J. M., Al-Zahrani, S. M., & Fierro, J. L. G. (2010). Liquid-phase oxidation of p-xylene using N-hydroxyimides. Catalysis Communications, 12(1), 5-8. https://doi.org/10.1016/j.catcom.2010.07.010
Fraga-Dubreuil, J., & Poliakoff, M. (2006). Organic reactions in high-temperature and supercritical water. Pure and Applied Chemistry, 78(11), 1971-1982. https://doi.org/10.1351/pac200678111971
Holliday, R. L., Jong, B. Y., & Kolis, J. W. (1998). Organic synthesis in subcritical water: Oxidation of alkyl aromatics. The Journal of Supercritical Fluids, 12(3), 255-260. https://doi.org/10.1016/S0896-8446(98)00084-9
Jiang, Z., Li, Y., Wang, S., Cui, C., Yang, C., & Li, J. (2020). Review on mechanisms and kinetics for supercritical water oxidation processes. Applied Sciences, 10(14), Article 4937. https://doi.org/10.3390/app10144937
Kim, Y. L., Kim, J. D., Lim, J. S., Lee, Y. W., & Yi, S. C. (2002). Reaction pathway and kinetics for uncatalyzed partial oxidation of p-xylene in sub-and supercritical water. Industrial & Engineering Chemistry Research, 41(23), 5576-5583. https://doi.org/10.1021/ie010952t
Kruse, A., & Dinjus, E. (2007a). Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. The Journal of Supercritical Fluids, 39(3), 362-380. https://doi.org/10.1016/j.supflu.2006.03.016
Kruse, A., & Dinjus, E. (2007b). Hot compressed water as reaction medium and reactant: 2. Degradation reactions. The Journal of Supercritical Fluids, 41(3), 361-379. https://doi.org/10.1016/j.supflu.2006.12.006
Kwak, J. W., Lee, J. S., & Lee, K. H. (2009). Co-oxidation of p-xylene and p-toluic acid to terephthalic acid in water solvent: Kinetics and additive effects. Applied Catalysis A: General, 358(1), 54-58. https://doi.org/10.1016/j.apcata.2009.01.037
Lee, H. L., Chiu, C. W., & Lee, T. (2021). Engineering terephthalic acid product from recycling of PET bottles waste for downstream operations. Chemical Engineering Journal Advances, 5, Article 100079. https://doi.org/10.1016/j.ceja.2020.100079
Li, K. T., & Li, S. W. (2008). CoBr2-MnBr2 containing catalysts for catalytic oxidation of p-xylene to terephthalic acid. Applied Catalysis A: General, 340(2), 271-277. https://doi.org/10.1016/j.apcata.2008.02.025
Li, M., Niu, F., Zuo, X., Metelski, P. D., Busch, D. H., & Subramaniam, B. (2013). A spray reactor concept for catalytic oxidation of p-xylene to produce high-purity terephthalic acid. Chemical Engineering Science, 104, 93-102. https://doi.org/10.1016/j.ces.2013.09.004
Osada, M., & Savage, P. E. (2009a). Terephthalic acid synthesis at higher concentrations in high‐temperature liquid water. 1. Effect of oxygen feed method. AIChE Journal, 55(3), 710-716. https://doi.org/10.1002/aic.11718
Osada, M., & Savage, P. E. (2009b). Terephthalic acid synthesis at higher concentrations in high‐temperature liquid water. 2. Eliminating undesired byproducts. AIChE Journal, 55(6), 1530-1537. https://doi.org/10.1002/aic.11761
Pérez, E., Fraga-Dubreuil, J., García-Verdugo, E., Hamley, P. A., Thomas, M. L., Yan, C., & Poliakoff, M. (2011). Selective aerobic oxidation of para-xylene in sub-and supercritical water. Part 2. The discovery of better catalysts. Green Chemistry, 13(9), 2397-2407. https://doi.org/10.1039/C1GC15138J
Savage, P. E. (2009). A perspective on catalysis in sub-and supercritical water. The Journal of Supercritical Fluids, 47(3), 407-414. https://doi.org/10.1016/j.supflu.2008.09.007
Tomás, R. A., Bordado, J. C., & Gomes, J. F. (2013). p-xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and development. Chemical Reviews, 113(10), 7421-7469. https://doi.org/10.1021/cr300298j
Vakros, J. (2021). Recent advances in cobalt and related catalysts: From catalyst preparation to catalytic performance. Catalysts, 11(4), Article 420. https://doi.org/10.3390/catal11040420
Walt, P. (2020). A chemical model for the Amoco “MC” oxygenation process to produce terephthalic acid. In D. W. Blackburn (Ed.), Catalysis of Organic Reactions (pp. 321-346). CRC Press. https://doi.org/10.1201/9781003066446
Xu, L., Chen, D., Jiang, H., & Yuan, X. (2020). Efficient oxidation of p-xylene to terephthalic acid by using N, N-dihydroxypyromellitimide in conjunction with Co-benzenetricarboxylate. Applied Catalysis A: General, 599, Article 117569. https://doi.org/10.1016/j.apcata.2020.117569
ISSN 1511-3701
e-ISSN 2231-8542