PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 31 (1) Jan. 2023 / JST-3393-2022

 

Optimization of the Formulation of Sago Starch Edible Coatings Incorporated with Nano Cellulose Fiber (CNF)

Rahmiyati Kasim, Nursigit Bintoro, Sri Rahayoe and Yudi Pranoto

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 1, January 2023

DOI: https://doi.org/10.47836/pjst.31.1.21

Keywords: CNF, coatings, film, sago starch

Published on: 3 January 2023

This study aimed to produce new edible coatings based on the mixture of sago starch, cellulose nanofiber (CNF), glycerol, and tween-80.The effect of sago starch (5–10 g of starch/100 ml of distilled water), CNF (0.5–20% w/w), glycerol (10–30% w/w), and tween-80 (0.5–10% w/w) based on sago starch concentration on contact angle (CA), water vapor permeability (WVP), oxygen permeability (PO2) and tensile strength (TS) properties of the edible coatings were optimized using factorial experimental design (2k).The result showed that the linear model for all independent variables was significant (P<0.05) on all responses (dependent variable).The sago starch concentration depicted a significant (p < 0.001) positive effect on contact angle; CNF showed a statistically significant effect on WVP, PO2, and TS; tween-80 showed a significant effect on all dependent variables, whereas glycerol only affected WVP. The optimum concentrations of sago starch, CNF, glycerol, and tween-80 were predicted to be 5 g/100 ml distilled water, 20% w/w, 10% w/w, and 0.5% w/w based on sago starch, respectively to obtain the minimum contact angle, WVP, PO2, and the maximum TS. The predicted data for the optimized coating formulation were in good agreement with the experimental value. This work revealed that the potential of sago starch/CNF based coating formulation could be effectively produced and successfully applied for coating of food.

  • Agarwal, S. (2021). Major factors affecting the characteristics of starch based biopolymer films. European Polymer Journal, 160, Article 110788. https://doi.org/10.1016/j.eurpolymj.2021.110788

  • Andrade, R., Skurtys, O., Osorio, F., Zuluaga, R., Gañán, P., & Castro, C. (2014). Wettability of gelatin coating formulations containing cellulose nanofibers on banana and eggplant epicarps. LWT-Food Science and Technology, 58(1), 158-165. https://doi.org/10.1016/j.lwt.2014.02.034

  • ASTM D882. (2010). Standard test methods for tensile properties of thin plastic sheeting, Annual Book of ASTM Standards, 87(Reapproved), 3-5. https://doi.org/10.1520/D0882-10

  • ASTM E 96 (1995). Standard test methods for water vapor transmission of materials. ASTM International. https://doi.org/10.1520/E0096-00E01

  • Azeredo, H. M. C., Rosa, M. F., Henrique, L., & Mattoso, C. (2017). Nanocellulose in bio-based food packaging applications. Industrial Crops & Products, 97, 664-671. https://doi.org/10.1016/j.indcrop.2016.03.013

  • Bagheri, V., Ghanbarzadeh, B., Ayaseh, A., Ostadrahimi, A., Ehsani, A., Alizadeh-Sani, M., & Adun, P. A. (2019). The optimization of physico-mechanical properties of bionanocomposite films based on gluten/ carboxymethyl cellulose/cellulose nanofiber using response surface methodology. Polymer Testing, 78, Article 105989. https://doi.org/10.1016/j.polymertesting.2019.105989

  • Balakrishnan, P., Sreekala, M. S., Kunaver, M., Huskić, M., & Thomas, S. (2017). Morphology, transport characteristics and viscoelastic polymer chain confinement in nanocomposites based on thermoplastic potato starch and cellulose nanofibers from pineapple leaf. Carbohydrate Polymers, 169, 176-188. https://doi.org/10.1016/j.carbpol.2017.04.017

  • Bangar, S. P., & Whiteside, W. S. (2021). Nano-cellulose reinforced starch bio composite films-A review on green composites. International Journal of Biological Macromolecules, 185, 849-860. https://doi.org/10.1016/j.ijbiomac.2021.07.017

  • Basiak, E., Lenart, A., & Debeaufort, F. (2017). Effect of starch type on the physico-chemical properties of edible films. International Journal of Biological Macromolecules, 98, 348-356. https://doi.org/10.1016/j.ijbiomac.2017.01.122

  • Cazón, P., Vázquez, M., & Velazquez, G. (2018). Novel composite films based on cellulose reinforced with chitosan and polyvinyl alcohol: Effect on mechanical properties and water vapour permeability. Polymer Testing, 69, 536-544. https://doi.org/10.1016/j.polymertesting.2018.06.016

  • Da Silva, J. B. A., Nascimento, T., Costa, L. A. S., Pereira, F. V., Machado, B. A., Gomes, G. V. P., Assis, D. J., & Druzian, J. I. (2015). Effect of source and interaction with nanocellulose cassava starch, glycerol and the properties of films bionanocomposites. Materials Today: Proceedings, 2(1), 200-207. https://doi.org/10.1016/j.matpr.2015.04.022

  • Deng, Z., Jung, J., Simonsen, J., & Zhao, Y. (2017). Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas (Musa acuminate). Food Chemistry, 232, 359-368. https://doi.org/10.1016/j.foodchem.2017.04.028

  • Deng, Z., Jung, J., Simonsen, J., & Zhao, Y. (2018). Cellulose nanocrystals pickering emulsion incorporated chitosan coatings for improving storability of postharvest bartlett pears (Pyrus communis) during long-term cold storage. Food Hydrocolloids, 84, 229-237. https://doi.org/10.1016/j.foodhyd.2018.06.012

  • Ferrer, A., Pal, L., & Hubbe, M. (2017). Nanocellulose in packaging: Advances in barrier layer technologies. Industrial Crops & Products, 95, 574-582. https://doi.org/10.1016/j.indcrop.2016.11.012

  • Ghosh, T., Nakano, K., & Katiyar, V. (2021). Curcumin doped functionalized cellulose nanofibers based edible chitosan coating on kiwifruits. International Journal of Biological Macromolecules, 184, 936-945. https://doi.org/10.1016/j.ijbiomac.2021.06.098

  • Gopi, S., Amalraj, A., Jude, S., Thomas, S., & Guo, Q. (2019). Bionanocomposite films based on potato, tapioca starch and chitosan reinforced with cellulose nanofiber isolated from turmeric spent. Journal of the Taiwan Institute of Chemical Engineers, 96, 664-671. https://doi.org/10.1016/j.jtice.2019.01.003

  • Hajar, O. S., Nordin, N., Ayuni, N., Azman, A., Sya, I., Amin, M., & Kadir, R. (2021). Effects of nanocellulose fi ber and thymol on mechanical, thermal, and barrier properties of corn starch films. International Journal of Biological Macromolecules. 183, 1352-1361. https://doi.org/10.1016/j.ijbiomac.2021.05.082

  • Kania, D., Yunus, R., Omar, R., Abdul, S., & Mohamed, B. (2021). Physicochemical and engineering aspects rheological investigation of synthetic-based drilling fluid containing non-ionic surfactant pentaerythritol ester using full factorial design. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 625, Article 126700. https://doi.org/10.1016/j.colsurfa.2021.126700

  • Karim, A. A., & Tie, A. P. (2008). Starch from the sago (metroxylon sagu) palm tree - Properties, prospects, and challenges as a new industrial source for food. Comprehensive Reviews in Food Science and Food Safety, 7(3), 215-228. https://doi.org/10.1111/j.1541-4337.2008.00042.x

  • Kim, H., Roy, S., & Rhim, J. (2021). Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. Journal of Environmental Chemical Engineering, 9(5), Article 106043. https://doi.org/10.1016/j.jece.2021.106043

  • Kubík, Ľ., & Zeman, S. (2013). Determination of oxygen permeability of polyethylene and polypropylene nonwoven fabric foils. Research in Agricultural Engineering, 59(3), 105-113.

  • Lavecchia, R., Medici, F., Piga, L., & Zuorro, A. (2015). Factorial design analysis of the recovery of flavonoids from bilberry fruit by-products. International Journal of Applied

  • Engineering Research, 10(23), 43555-43559.

  • Li, M., Tian, X., Jin, R., & Li, D. (2018). Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Industrial Crops and Products, 123, 654-660. https://doi.org/10.1016/j.indcrop.2018.07.043

  • Lopez-Polo, J., Silva-Weiss, A., Zamorano, M., & Osorio, F. A. (2020). Humectability and physical properties of hydroxypropyl methylcellulose coatings with liposome-cellulose nanofibers: Food application. Carbohydrate Polymers, 231, Article 115702. https://doi.org/10.1016/j.carbpol.2019.115702

  • Maniglia, B. C., Denise, Laroque, D. A., de Andrade, L. M., Carciofi, B. A. M., Tenorio, J. A. S., & de Andrade, C. J. (2019). Production of active cassava starch films; effect of adding a biosurfactant or synthetic surfactant. Reactive and Functional Polymers, 144, Article 104368. https://doi.org/10.1016/j.reactfunctpolym. 2019.104368

  • Meneguin, A. B., Ferreira Cury, B. S., dos Santos, A. M., Franco, D. F., Barud, H. S., & da Silva Filho, E. C. (2017). Resistant starch/pectin free-standing films reinforced with nanocellulose intended for colonic methotrexate release. Carbohydrate Polymers, 157, 1013-1023. https://doi.org/10.1016/j.carbpol.2016.10.062

  • Ortega-toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Effect of the incorporation of surfactants on the physical properties of corn starch films. Food Hydrocolloids, 38, 66-75. https://doi.org/10.1016/j.foodhyd.2013.11.011

  • Rodriguez, M., Oses, J., Ziani, K., & Mate, J. I. (2006). Combined effect of plasticizers and surfactants on the physical properties of starch based edible films. Food Research International, 39(8), 840-846. https://doi.org/10.1016/j.foodres.2006.04.002

  • Patil, S., Bharimalla, A. K., Mahapatra, A., Dhakane-Lad, J., Arputharaj, A., Kumar, M., Raja, A. S. M., & Kambli, N. (2021). Effect of polymer blending on mechanical and barrier properties of starch-polyvinyl alcohol based biodegradable composite films. Food Bioscience, 44(Part A), Article 101352. https://doi.org/10.1016/j.fbio.2021.101352

  • Paula, A., Lamsal, B., Luiz, W., Magalhães, E., & Mottin, I. (2019). Cassava starch films reinforced with lignocellulose nanofibers from cassava bagasse. International Journal of Biological Macromolecules, 139, 1151-1161. https://doi.org/10.1016/j.ijbiomac.2019. 08.115

  • Punia, S., Scott, W., Dunno, K. D., Armstrong, G., Dawson, P., & Love, R. (2022). Starch-based bio-nanocomposites films reinforced with cellulosic nanocrystals extracted from Kudzu (Pueraria montana) vine. International Journal of Biological Macromolecules, 203, 350-360. https://doi.org/10.1016/j.ijbiomac.2022.01.133

  • Rahayoe, S. (2015). Control of characteristics of chitosan film as fruit coating with the

  • variation of types and additive compositions in making coating solutions (Doctoral dissertation). Gadjah Mada University, Indonesia. https://lib.ugm.ac.id/

  • Ribeiro, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63-70. https://doi.org/10.1016/j.postharvbio.2006.11.015

  • Riva, S. C., Opara, U. O., & Fawole, O. A. (2020). Recent developments on postharvest application of edible coatings on stone fruit: A review. Scientia Horticulturae, 262, Article 109074. https://doi.org/10.1016/j.scienta.2019.109074

  • Santacruz, S., Rivadeneira, C., & Castro, M. (2015). Edible films based on starch and chitosan. Effect of starch source andconcentration, plasticizer, surfactant’s hydrophobic tail andmechanical treatment. Food Hydrocolloids, 49, 89-94. https://doi.org/10.1016/j.foodhyd.2015.03.019

  • Sapper, M., Bonet, M., & Chiralt, A. (2019). Wettability of starch-gellan coatings on fruits, as affected by the incorporation of essential oil and/or surfactants. LWT, 116, Article 108574. https://doi.org/10.1016/j.lwt.2019.108574

  • Serpa, A., & Vel, J. (2016). Vegetable nanocellulose in food science: A review. Food Hydrocolloids 57, 178-186. https://doi.org/10.1016/j.foodhyd.2016.01.023

  • Shih, Y. T., & Zhao, Y. (2021). Development, characterization and validation of starch based biocomposite films reinforced by cellulose nanofiber as edible muffin liner. Food Packaging and Shelf Life, 28, Article 100655. https://doi.org/10.1016/j.fpsl.2021.100655

  • Silva, A. P. M., Oliveira, A. V., Pontes, S. M. A., Pereira, A. L. S., Souza Filho, M. de sá M., Rosa, M. F., & Azeredo, H. M. C. (2019). Mango kernel starch films as affected by starch nanocrystals and cellulose nanocrystals. Carbohydrate Polymers, 211, 209-216. https://doi.org/10.1016/j.carbpol.2019.02.013

  • Soofi, M., Alizadeh, A., Hamishehkar, H., Almasi, H., & Roufegarinejad, L. (2021). Preparation of nanobiocomposite film based on lemon waste containing cellulose nanofiber and savory essential oil: A new biodegradable active packaging system. International Journal of Biological Macromolecules, 169, 352-361. https://doi.org/10.1016/j.ijbiomac.2020.12.114

  • Soradech, S., Nunthanid, J., Limmatvapirat, S., & Luangtana-anan, M. (2017). Utilization of shellac and gelatin composite film for coating to extend the shelf life of banana. Food Control, 73(Part B), 1310-1317. https://doi.org/10.1016/j.foodcont.2016.10.059

  • Soto-Muñoz, L., Palou, L., Argente-Sanchis, M., Ramos-López, M. A., & Pérez-Gago, M. B. (2021). Optimization of antifungal edible pregelatinized potato starch-based coating formulations by response surface methodology to extend postharvest life of ‘Orri’ mandarins Lourdes SotoMun. Scientia Horticulturae, 288, Article 110394. https://doi.org/10.1016/j.scienta.2021.110394

  • Stachowiak, N., Kowalonek, J., & Kozlowska, J. (2020). Effect of plasticizer and surfactant on the properties of poly(vinyl alcohol)/chitosan films. International Journal of Biological Macromolecules, 164, 2100-2107. https://doi.org/10.1016/j.ijbiomac.2020.08.001

  • Sun, X., Wu, Q., Picha, D. H., Ferguson, M. H., Ndukwe, I. E., & Azadi, P. (2021). Comparative performance of bio-based coatings formulated with cellulose, chitin, and chitosan nanomaterials suitable for fruit preservation. Carbohydrate Polymers, 259, Article 117764. https://doi.org/10.1016/j.carbpol.2021.117764

  • Syafri, E., Jamaluddin, Wahono, S., Irwan, A., Asrofi, M., Sari, N. H., & Fudholi, A. (2019). Characterization and properties of cellulose microfibers from water hyacinth filled sago starch biocomposites. International Journal of Biological Macromolecules, 137, 119-125. https://doi.org/10.1016/j.ijbiomac.2019.06.174

  • Thakur, R., Pristijono, P., Golding, J. B., Stathopoulos, C. E., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2018). Development and application of rice starch based edible coating to improve the postharvest storage potential and quality of plum fruit (Prunus salicina). Scientia Horticulturae, 237, 59-66. https://doi.org/10.1016/j.scienta.2018.04.005

  • Thakur, Rahul, Pristijono, P., Scarlett, C. J., Bowyer, M., Singh, S. P., & Vuong, Q. V. (2019). Starch-based films: Major factors affecting their properties. International Journal of Biological Macromolecules, 132, 1079-1089. https://doi.org/10.1016/j.ijbiomac.2019.03.190

  • Tibolla, H., Pelissari, F. M., Martins, J. T., Lanzoni, E. M., Vicente, A. A., Menegalli, F. C., & Cunha, R. L. (2019). Banana starch nanocomposite with cellulose nanofibers isolated from banana peel by enzymatic treatment: In vitro cytotoxicity assessment. Carbohydrate Polymers, 207, 169-179. https://doi.org/10.1016/j.carbpol.2018.11.079

  • Ventura-Aguilar, R. I., Bautista-Baños, S., Flores-García, G., & Zavaleta-Avejar, L. (2018). Impact of chitosan based edible coatings functionalized with natural compounds on Colletotrichum fragariae development and the quality of strawberries. Food Chemistry, 262, 142-149. https://doi.org/10.1016/j.foodchem.2018.04.063

  • Vieira, J. M., Flores-López, M. L., de Rodríguez, D. J., Sousa, M. C., Vicente, A. A., & Martins, J. T. (2016). Effect of chitosan-Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biology and Technology, 116, 88-97. https://doi.org/10.1016/j.postharvbio.2016.01.011

  • Widaningrum, W., Miskiyah, M., & Winarti, C. (2015). Edible coating berbasis pati sagu dengan penambahan antimikroba minyak sereh pada paprika: Preferensi konsumen dan mutu vitamin C [Sago starch-based edible coating with antimicrobial addition of lemongrass oil to peppers: Consumer preferences and vitamin c]. Agritech Journal, 35(1), 53-60. https://doi.org/10.22146/agritech.9419

  • Xu, J., Xia, R., Zheng, L., Yuan, T., & Sun, R. (2019). Plasticized hemicelluloses/chitosan-based edible films reinforced by cellulose nano fiber with enhanced mechanical properties. Carbohydrate Polymers, 224, Article 115164. https://doi.org/10.1016/j.carbpol.2019.115164

  • Yuan, Y., & Chen, H. (2021). Preparation and characterization of a biodegradable starch-based antibacterial film containing nanocellulose and polyhexamethylene biguanide. Food Packaging and Shelf Life, 30, Article 100718. https://doi.org/10.1016/j.fpsl.2021.100718

  • Zhong, Y., & Li, Y. (2011). Effects of surfactants on the functional and structural properties of kudzu (Pueraria lobata) starch/ascorbic acid films. Carbohydrate Polymers, 85(3), 622-628. https://doi.org/10.1016/j.carbpol.2011.03.031

  • Zhu, F. (2019). Food Hydrocolloids Recent advances in modifications and applications of sago starch. Food Hydrocolloids, 96, 412-423. https://doi.org/10.1016/j.foodhyd.2019.05.035

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST-3393-2022

Download Full Article PDF

Share this article

Related Articles