Home / Regular Issue / JTAS Vol. 46 (4) Nov. 2023 / JTAS-2677-2023

 

Growth Performance of Broiler Chicken Supplemented with Bacillus velezensis D01Ca and Bacillus siamensis G01Bb Isolated from Goat and Duck Microbiota

Gary Antonio Lirio, James Jr. Cerado, Jenine Tricia Esteban, Jeffery Adriano Ferrer and Claire Salvedia

Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 4, November 2023

DOI: https://doi.org/10.47836/pjtas.46.4.02

Keywords: Bacillus velezensis D01Ca, Bacillus siamensis G01Bb, broiler chicken, growth performance, gut microbiota

Published on: 27 November 2023

The increasing global demand for sustainable agricultural practices and the quest for food security has intensified the need for alternative solutions to promote healthy growth in farm animals. One potential strategy is the use of probiotics derived from diverse sources, which remains relatively uncharted. In this context, this study aimed to assess the probiotic potentials of Bacillus velezensis D01Ca and Bacillus siamensis G01Bb, strains sourced from the gut of ducks and goats. Using two completely randomized experimental designs with 150-day-old broiler chickens, two distinct set-ups were implemented. In the first, broilers were subjected to either a control condition, a single dose of B. velezensis D01Ca at 2.4 × 107 cfu/ml, or its double dose. The second set-up followed a similar setup, but with B. siamensis G01Bb at 2.29 × 107 cfu/ml. Throughout the 42-day trial, all broilers consumed a commercial ration ad libitum and accessed water freely, with specific groups receiving the supplemented water based on the treatment. Results show that the feed intake of broilers remained unaffected by the probiotic supplementation, with no significant difference (P≤0.05). However, broilers in the supplemented groups exhibited a noticeable increase in body weight and body weight gain when compared to the control. The feed conversion ratio, crucially, was consistent across all test groups. Conclusively, our findings suggest that B. velezensis D01Ca and B. siamensis G01Bb hold promise as viable probiotics for broiler chickens, offering potential strides toward sustainable agricultural practices and enhanced food security.

  • Abd-Elhalem, B. T., El-Sawy, M., Gamal, R. F., & Abou-Taleb, K. A. (2015). Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Annals of Agricultural Sciences, 60(2), 193–202. https://doi.org/10.1016/j.aoas.2015.06.001

  • Adhikari, B., Hernandez-Patlan, D., Solis-Cruz, B., Kwon, Y. M., Arreguin, M. A., Latorre, J. D., Hernandez-Velasco, X., Hargis, B. M., & Tellez-Isaias, G. (2019). Evaluation of the antimicrobial and anti-inflammatory properties of Bacillus-DFM (Norum™) in broiler chickens infected with Salmonella Enteritidis. Frontiers in Veterinary Science, 6, 282. https://doi.org/10.3389/fvets.2019.00282

  • Arret, B., & Kirshbaum, A. (1959). A rapid disc assay method for detecting penicillin in milk. Journal of Milk Food Technology, 22(11), 329-331. https://doi.org/10.4315/0022-2747-22.11.329

  • Awad, W. A., Ghareeb, K., Abdel-Raheem, S., & Böhm, J. (2009). Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poultry Science, 88(1), 49–56. https://doi.org/10.3382/ps.2008-00244

  • Bailey, J. S, Stern, N. J., & Cox, N. A. (2000). Commercial field trial evaluation of mucosal starter culture to reduce Salmonella incidence in processed broiler carcasses. Journal of Food Protection, 63(7), 867–870. https://doi.org/10.4315/0362-028x-63.7.867

  • Bernardeau, M., Lethtinen, M. J., Forssten, S. D., & Nurminen, P. (2017). Importance of the gastrointestinal life cycle of Bacillus for probiotic functionality. Journal of Food Science and Technology, 54, 2570-2584. https://doi.org/10.1007/s13197-017-2688-3

  • Boirivant, M., & Strober, W. (2007). The mechanism of action of probiotics. Current Opinion in Gastroenterology, 23(6), 679–692. https://doi.org/10.1097/mog.0b013e3282f0cffc

  • Bureau of Agriculture and Fisheries Standards. (2015). Code of slaughtering practices for goats. BAFS. https://www.bafs.da.gov.ph/bafs_admin/admin_page/pns_file/2021-02-24-PNS%20BAFS%20164_2015%20Code%20of%20Slaughtering%20Practice%20for%20Goats.pdf

  • Bureau of Agriculture and Fisheries Standards. (2017). Good animal husbandry practices for ducks. BAFS. https://members.wto.org/crnattachments/2017/SPS/PHL/17_4779_00_e.pdf

  • Callaway, T. R., Edrington, T. S., Anderson, R. C., Harvey, R. B., Genovese, K. J., Kennedy, C. N., Venn, D. W., & Nisbet, D. J. (2008). Probiotics, prebiotics, and competitive exclusion for prophylaxis against bacterial disease. Animal Health Research Reviews, 9(2), 217–225. https://doi.org/10.1017/s1466252308001540

  • Daghir, N. J., Beirut., & Lebanon. (2009). Nutritional strategies to reduce heat stress in broilers and broiler breeders. Lohman Information, 44(1), 6-15.

  • Elliott, K. A., Kenny, C., & Madan, J. (2017). A global treaty to reduce antimicrobial use in livestock. Center for Global Development. http://www.cgdev.org/publication/global-treaty-reduce-antimicrobial-use-livestock

  • Elshaghabee, F. M. F., Rokana, N., Gulhane, R. D., Sharma, C., & Panwar, H. (2017). Bacillus as potential probiotics: Status, concerns, and future perspectives. Frontiers in Microbiology, 8, 1490. https://doi.org/10.3389/fmicb.2017.01490

  • Firth, C. L., Käsbohrer, A., Egger-Danner, C., Fuchs, K., Pinior, B., Roch, F.-F., & Obritzhauser, W. (2019). Comparison of defined course doses (DCDvet) for blanket and selective antimicrobial dry cow therapy on conventional and organic farms. Animals, 9(10), 707. https://doi.org/10.3390/ani9100707

  • Garbeva, P., van Veen, J. A., & van Elsas, J. D. (2003). Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microbial Ecology, 45, 302-316. https://doi.org/10.1007/s00248-002-2034-8

  • Guo, X.-H., Kim, J.-M., Nam, H.-M., Park, S.-Y., & Kim, J.-M. (2010). Screening lactic acid bacteria from swine origins for multistrain probiotics based on in vitro functional properties. Anaerobe, 16(4), 321–326. https://doi.org/10.1016/j.anaerobe.2010.03.006

  • Guyard-Nicodème, M., Keita, A., Quesne, S., Amelot, M., Poezevara, T., Le Berre, B., Sánchez, J., Vesseur, P., Martín, Á., Medel, P., & Chemaly, M. (2016). Efficacy of feed additives against Campylobacter in live broilers during the entire rearing period. Poultry Science, 95(2), 298–305. https://doi.org/10.3382/ps/pev303

  • Hosain, M. Z., Kabir, S. M. L., & Kamal, M. M. (2021). Antimicrobial uses for livestock production in developing countries. Veterinary World, 14(1), 210–221. https://doi.org/10.14202/vetworld.2021.210-221

  • Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R., & Chirakkal, H. (2013). Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry Science, 92(2), 370–374. https://doi.org/10.3382/ps.2012-02528

  • Jeong, J. S., & Kim, I. H. (2014). Effect of Bacillus subtilis C-3102 spores as a probiotic feed supplement on growth performance, noxious gas emission, and intestinal microflora in broilers. Poultry Science, 93(12), 3097–3103. https://doi.org/10.3382/ps.2014-04086

  • Kabir, S., M. L., Rahman, M. M., Rahman, M. B., Hosain, M. Z., Akand, M. S. I., & Das, S. K. (2005). Viability of probiotics in balancing intestinal flora and effecting histological changes of crop and caecal tissues of broilers. Biotechnology, 4(4), 325–330. https://doi.org/10.3923/biotech.2005.325.330

  • Ketelaars, E. H. (2005). Lecture notes on chicken farming in warm climate zones (1st ed.). Agromisa Foundation. https://survival.tcb13.com/Animal_Production/Poultry/Notes_On_Chicken_Farming_In_Warm_Climate_Zones_2005.pdf

  • Khaksefidi, A., & Ghoorchi, T. (2006). Effect of probiotic on performance and immunocompetence in broiler chicks. The Journal of Poultry Science, 43(3), 296–300. https://doi.org/10.2141/jpsa.43.296

  • Khan, M., Raoult, D., Richet, H., Lepidi, H., & La Scola, B. (2007). Growth-promoting effects of single-dose intragastrically administered probiotics in chickens. British Poultry Science, 48(6), 732–735. https://doi.org/10.1080/00071660701716222

  • Latorre, J. D., Hernandez-Velasco, X., Wolfenden, R. E., Vicente, J. L., Wolfenden, A. D., Menconi, A., Bielke, L. R., Hargis, B. M., & Tellez, G. (2016). Evaluation and selection of Bacillus species based on enzyme production, antimicrobial activity, and biofilm synthesis as direct-fed microbial candidates for poultry. Frontiers in Veterinary Science, 3, 95. https://doi.org/10.3389/fvets.2016.00095

  • Lin, Y., Xu, S., Zeng, D., Ni, X., Zhou, M., Zeng, Y., Wang, H., Zhou, Y., Zhu, H., Pan, K., & Li, G. (2017). Disruption in the cecal microbiota of chickens challenged with Clostridium perfringens and other factors was alleviated by Bacillus licheniformis supplementation. PLOS One, 12(8), e0182426. https://doi.org/10.1371/journal.pone.0182426

  • Liu, C.-H., Chiu, C.-S., Ho, P.-L., & Wang, S.-W. (2009). Improvement in the growth performance of white shrimp Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto. Journal of Applied Microbiology, 107(3), 1031–1041. https://doi.org/10.1111/j.1365-2672.2009.04284.x

  • Markowiak, P., & Śliżewska, K. (2018). The role of probiotics, prebiotics, and synbiotics in animal nutrition. Gut Pathogens, 10, 21. https://doi.org/10.1186/s13099-018-0250-0

  • Mingmongkolchai, S., & Panbangred, W. (2018). Bacillus probiotics: An alternative to antibiotics for livestock production. Journal of Applied Microbiology, 124(6), 1334–1346. https://doi.org/10.1111/jam.13690

  • Mountzouris, K. C., Tsitrsikos, P., Palamidi, I., Arvaniti, A., Mohnl, M., Schatzmayr, G., & Fegeros, K. (2010). Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poultry Science, 89(1), 58–67. https://doi.org/10.3382/ps.2009-00308

  • Nunes, R. V., Scherer, C., Pozza, P. C., Eyng, C., Bruno, L. D. G., & Vieites, F. M. (2012). Use of probiotics to replace antibiotics for broilers. Revista Brasileira de Zootecnia, 41(10), 2219–2224. https://doi.org/10.1590/s1516-35982012001000012

  • Olson, N. D., & Morrow, J. B. (2012). DNA extract characterization process for microbial detection methods development and validation. BMC Research Notes, 5, 668. https://doi.org/10.1186/1756-0500-5-668

  • Patterson, J. A., & Burkholder, K. M. (2003). Application of prebiotics and probiotics in poultry production. Poultry Science, 82(4), 627–631. https://doi.org/10.1093/ps/82.4.627

  • Ray, A. K., Ghosh, K., & Ringø, E. (2012). Enzyme-producing bacteria isolated from fish gut: A review. Aquaculture Nutrition, 18(5), 465–492. https://doi.org/10.1111/j.1365-2095.2012.00943.x

  • Roy, B. C, Chowdhury, S. D, & Kabir, S. L. (2015). Effects of feeding Bacillus subtilis to heat stressed broiler chickens with or without an antibiotic growth promoter. Asian Journal of Medical Biological Research, 1(1), 80–88. https://doi.org/10.3329/ajmbr.v1i1.25502

  • Shabani, R., Nosrati, M., Javandel, F., & Kioumarsi, H. (2012). The effect of probiotics on carcass and internal organs of broilers. Annals of Biological Research, 3(12), 5475-5477.

  • Teo, A. Y.-L., & Tan, H.-M. (2005). Inhibition of Clostridium perfringens by a novel strain of Bacillus subtilis isolated from the gastrointestinal tracts of healthy chickens. Applied and Environmental Microbiology, 71(8), 4185–4190. https://doi.org/10.1128/aem.71.8.4185-4190.2005

  • Timmerman, H. M., Veldman, A., van den Elsen, E., Rombouts, F. M., & Beynen, A. C. (2006). Mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics. Poultry Science, 85(8), 1383–1388. https://doi.org/10.1093/ps/85.8.1383

  • Urdaci, M. C., Bressollier, P., & Pinchuk, I. (2004). Bacillus clausii probiotic strains: Antimicrobial and immunomodulatory activities. Journal of Clinical Gastroenterology, 38, S86–S90. https://doi.org/10.1097/01.mcg.0000128925.06662.69

  • Vijayaraghavan, P., & Vincent, S. G. P. (2013). A simple method for the detection of protease activity on agar plates using bromocresolgreen dye. Journal of Biochemical Technology, 4(3), 628-630.

  • Xia, J.-L., Xiong, J., Zhang, R.-Y., Liu, K.-K., Huang, B., & Nie, Z.-Y. (2011). Production of chitinase and its optimization from a novel isolate Serratia marcescens XJ-01. Indian Journal of Microbiology, 51, 301–306. https://doi.org/10.1007/s12088-011-0139-9

  • Zarei, N., Golmakani, M.-T., Keramat, M., Majdinasab, M., & Karami, A. (2021). Process intensification for the autocatalytic esterification of citronellol using microwave radiation. LWT, 145, 111358. https://doi.org/10.1016/j.lwt.2021.111358

  • Zhang, B., Yang, X., Guo, Y., & Long, F. (2011). Effects of dietary lipids and Clostridium butyricumon the performance and the digestive tract of broiler chickens. Archives of Animal Nutrition, 65(4), 329–339. https://doi.org/10.1080/1745039x.2011.568274

  • Zulkifli, I., Abdullah, N., Azrin, N. M., & Ho, Y. W. (2000). Growth performance and immune response of two commercial broiler strains fed diets containing Lactobacillus cultures and oxytetracycline under heat stress conditions. British Poultry Science, 41(5), 593–597. https://doi.org/10.1080/713654979

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2677-2023

Download Full Article PDF

Share this article

Related Articles