PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Tropical Agricultural Science, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abdi, M. M. R., Ghalandarzadeh, A., & Chafi, L. S. (2021). An investigation into the effects of lime on compressive and shear strength characteristics of fiber-reinforced clays. Journal of Rock Mechanics and Geotechnical Engineering, 13(4), 885-898. https://doi.org/10.1016/j.jrmge.2020.11.008

  • Al-Jabban, W., Laue, J., Knutsson, S., & Al-Ansari, N. (2019). A Comparative evaluation of cement and by-product Petrit T in soil stabilization. Applied Sciences, 9(23), Article 5238. https://doi.org/10.3390/app9235238

  • Al-Mukhtar, M., Lasledj, A., & Alcover, J. F. (2010). Behaviour and mineralogy changes in lime-treated expansive soil at 50°C. Applied Clay Science, 50(2), 199-203. https://doi.org/10.1016/j.clay.2010.07.022

  • Anggraini, V., Asadi, A., Syamsir, A., & Huat, B. B. K. (2017). Three point bending flexural strength of cement treated tropical marine soil reinforced by lime treated natural fiber. Measurement, 111, 158-166. https://doi.org/10.1016/j.measurement.2017.07.045

  • Ateş, A. (2016). Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC). Composites Part B: Engineering, 96, 295-304. https://doi.org/10.1016/j.compositesb.2016.04.049

  • Behnood, A. (2018). Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transportation Geotechnics, 17(Part A), 14-32. https://doi.org/10.1016/j.trgeo.2018.08.002

  • Boobalan, S. C., & Devi, M. S. (2022). Investigational study on the influence of lime and coir fiber in the stabilization of expansive soil. Materials Today: Proceedings, 60(Part 1), 311-314 https://doi.org/10.1016/J.MATPR.2022.01.230

  • Boz, A., & Sezer, A. (2018). Influence of fiber type and content on freeze-thaw resistance of fiber reinforced lime stabilized clay. Cold Regions Science and Technology, 151, 359-366. https://doi.org/10.1016/j.coldregions.2018.03.026

  • Boz, A., Sezer, A., Özdemir, T., Hızal, G. E., & Dolmacı, Ö. A. (2018). Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, 11(6), Article 122. https://doi.org/10.1007/s12517-018-3458-x

  • Broderick, G. P., & Daniel, D. E. (1990). Stabilizing compacted clay against chemical attack. Journal of Geotechnical Engineering, 116(10), 1549-1567. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:10(1549)

  • Cai, Y., Shi, B., Ng, C. W. W., & Tang, C. S. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering Geology, 87(3-4), 230-240. https://doi.org/10.1016/j.enggeo.2006.07.007

  • Chen, H., & Wang, Q. (2006). The behaviour of organic matter in the process of soft soil stabilization using cement. Bulletin of Engineering Geology and the Environment, 65(4), 445-448. https://doi.org/10.1007/s10064-005-0030-1

  • Chew, S. H., Kamruzzaman, A. H. M., & Lee, F. H. (2004). Physicochemical and engineering behavior of cement treated clays. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 696-706. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696)

  • Consoli, N. C., De Moraes, R. R., & Festugato, L. (2011). Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils. Geosynthetics International, 18(2), 57-62. https://doi.org/10.1680/gein.2011.18.2.57

  • Consoli, N. C., Montardo, J. P., Prietto, P. D. M., & Pasa, G. S. (2002). Engineering behavior of a sand reinforced with plastic waste. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), 462-472. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(462)

  • Correia, A. S. A. S., Oliveira, P. J. V., Odio, D. G. C., Oliveira, P. J. V., & Custódio, D. G. (2015). Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotextiles and Geomembranes, 43(2), 97-106. https://doi.org/10.1016/j.geotexmem.2014.11.008

  • Dhar, S., & Hussain, M. (2019). The strength behaviour of lime-stabilised plastic fibre-reinforced clayey soil. Road Materials and Pavement Design, 20(8), 1757-1778. https://doi.org/10.1080/14680629.2018.1468803

  • Ding, M., Zhang, F., Ling, X., & Lin, B. (2018). Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay. Cold Regions Science and Technology, 154, 155-165. https://doi.org/10.1016/j.coldregions.2018.07.004

  • Du, J., Liu, B., Wang, Z., Zheng, G., Jiang, N. J., Zhou, M., & Zhou, H. (2021). Dynamic behavior of cement-stabilized organic-matter-disseminated sand under cyclic triaxial condition. Soil Dynamics and Earthquake Engineering, 147, 106777. https://doi.org/10.1016/J.SOILDYN.2021.106777

  • Eskisar, T. (2015). Influence of cement treatment on unconfined compressive strength and compressibility of lean clay with medium plasticity. Arabian Journal for Science and Engineering, 40, 763-772. https://doi.org/10.1007/s13369-015-1579-z

  • Ghadakpour, M., Choobbasti, A. J., & Kutanaei, S. S. (2020). Investigation of the kenaf fiber hybrid length on the properties of the cement-treated sandy soil. Transportation Geotechnics, 22, Article 100301. https://doi.org/10.1016/j.trgeo.2019.100301

  • Ghazavi, M., & Roustaie, M. (2010). The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay. Cold Regions Science and Technology, 61(2), 125-131. https://doi.org/10.1016/j.coldregions.2009.12.005

  • Ghobadi, M. H., Abdilor, Y., & Babazadeh, R. (2014). Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bulletin of Engineering Geology and the Environment, 73, 611-619. https://doi.org/10.1007/S10064-013-0563-7

  • Güllü, H., & Khudir, A. (2014). Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime. Cold Regions Science and Technology, 106-107, 55-65. https://doi.org/10.1016/j.coldregions.2014.06.008

  • Hamidi, A., & Hooresfand, M. (2013). Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles and Geomembranes, 36, 1-9. https://doi.org/10.1016/j.geotexmem.2012.10.005

  • Han, J. (2015). Principles and practice of ground improvement. John Wiley & Sons.

  • He, S., Wang, X., Bai, H., Xu, Z., & Ma, D. (2021). Effect of fiber dispersion, content and aspect ratio on tensile strength of PP fiber reinforced soil. Journal of Materials Research and Technology, 15, 1613-1621. https://doi.org/10.1016/J.JMRT.2021.08.128

  • Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045

  • Jafari, M., & Esna-ashari, M. (2012). Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze-thaw condition. Cold Regions Science and Technology, 82, 21-29. https://doi.org/10.1016/j.coldregions.2012.05.012

  • Jairaj, C., Kumar, M. T. P., & Ramesh, H. N. (2020). Effect of addition of lime on coir fiber admixed BC soil. Innovative Infrastructure Solutions, 5, Article 49. https://doi.org/10.1007/s41062-020-00300-3

  • Jamsawang, P., Voottipruex, P., & Horpibulsuk, S. (2015). Flexural strength characteristics of compacted cement-polypropylene fiber sand. Journal of Materials in Civil Engineering, 27(9), Article 04014243. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001205

  • Kafodya, I., & Okonta, F. (2018). Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil. Construction and Building Materials, 170, 737-746. https://doi.org/10.1016/j.conbuildmat.2018.02.194

  • Kamaruddin, F. A., Nahazanan, H., Huat, B. K., & Anggraini, V. (2020). Improvement of marine clay soil using lime and alkaline activation stabilized with inclusion of treated coir fibre. Applied Sciences, 10(6), Article 2129. https://doi.org/10.3390/app10062129

  • Kravchenko, E., Liu, J., Krainiukov, A., & Chang, D. (2019). Dynamic behavior of clay modified with polypropylene fiber under freeze-thaw cycles. Transportation Geotechnics, 21, Article 100282. https://doi.org/10.1016/j.trgeo.2019.100282

  • Kumar, A., & Gupta, D. (2016). Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash-soil mixtures. Geotextiles and Geomembranes, 44(3), 466-474. https://doi.org/10.1016/j.geotexmem.2015.07.010

  • Kutanaei, S. S., & Choobbasti, A. J. (2017). Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand. Journal of Materials in Civil Engineering, 29(3), Article 4016230.

  • Labiad, Y., Meddah, A., & Beddar, M. (2022). Physical and mechanical behavior of cement-stabilized compressed earth blocks reinforced by sisal fibers. Materials Today: Proceedings, 53(Part 1), 139-143. https://doi.org/10.1016/J.MATPR.2021.12.446

  • Lee, M. K., & Barr, B. I. G. (2004). An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cement and Concrete Composites, 26(4), 299-305. https://doi.org/10.1016/S0958-9465(02)00139-7

  • Lenoir, T., Preteseille, M., & Ricordel, S. (2016). Contribution of the fiber reinforcement on the fatigue behavior of two cement-modified soils. International Journal of Fatigue, 93(Part1), 71-81. https://doi.org/10.1016/j.ijfatigue.2016.08.007

  • Li, M., Chai, S. X., Zhang, H. Y., Du, H. P., & Wei, L. (2012). Feasibility of saline soil reinforced with treated wheat straw and lime. Soils and Foundations, 52(2), 228-238. https://doi.org/10.1016/j.sandf.2012.02.003

  • Little, D. N., & Nair, S. (2009). Recommended practice for stabilization of subgrade soils and base materials. National Academies Press. https://doi.org/10.17226/22999

  • Miller, C. J., & Rifai, S. (2004). Fiber reinforcement for waste containment soil liners. Journal of Environmental Engineering, 130(8), 891-895.

  • Mishra, B., & Gupta, M. K. (2018). Use of randomly oriented polyethylene terephthalate (PET) fiber in combination with fly ash in subgrade of flexible pavement. Construction and Building Materials, 190, 95-107. https://doi.org/10.1016/j.conbuildmat.2018.09.074

  • Mobini, M., Khaloo, A., Hosseini, P., & Esrafili, A. (2015). Mechanical properties of fiber-reinforced high-performance concrete incorporating pyrogenic nanosilica with different surface areas. Construction and Building Materials, 101(Part 1), 130-140. https://doi.org/10.1016/j.conbuildmat.2015.10.032

  • Moghal, A. A. B., Chittoori, B. C. S., & Basha, B. M. (2018). Effect of fibre reinforcement on CBR behaviour of lime-blended expansive soils: Reliability approach. Road Materials and Pavement Design, 19(3), 690-709. https://doi.org/10.1080/14680629.2016.1272479

  • Narani, S. S., Abbaspour, M., Hosseini, S. M. M. M., & Nejad, F. M. (2020). Long-term dynamic behavior of a sandy subgrade reinforced by Waste Tire Textile Fibers (WTTFs). Transportation Geotechnics, 24, Article 100375. https://doi.org/https://doi.org/10.1016/j.trgeo.2020.100375

  • Oliveira, P. J. V., Correia, A. A. S., Teles, J. M. N. P. C., & Custódio, D. G. (2016). Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilised. Geosynthetics International, 23(3), 171-182. https://doi.org/10.1680/jgein.15.00040

  • Onyejekwe, S., & Ghataora, G. S. (2014). Effect of fiber inclusions on flexural strength of soils treated with nontraditional additives. Journal of Materials in Civil Engineering, 26(8), Article 4014039.

  • Osinubi, K. J., Ijmdiya, T. S., & Nmadu, I. (2009). Lime stabilization of black cotton soil using bagasse ash as admixture. Advanced Materials Research, 62-64, 3-10. https://doi.org/10.4028/www.scientific.net/amr.62-64.3

  • Otoko, G. R., & Pedro, P. P. (2014). Cement stabilization of Laterite and Chikoko soils using waste rubber fibre. International Journal of Engineering Sciences & Research Technology, 3(10), 130-136.

  • Petry, T. M., & Little, D. N. (2002). Review of stabilization of clays and expansive soils in pavements and lightly loaded structures - History, practice, and future. Journal of Materials in Civil Engineering, 14(6), 447-460. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(447)

  • Praveen, G. V., & Kurre, P. (2020). Influence of coir fiber reinforcement on shear strength parameters of cement modified marginal soil mixed with fly ash. Materials Today: Proceedings, 39(Part 1), 504-507. https://doi.org/10.1016/j.matpr.2020.08.238

  • Praveen, G. V, Kurre, P., & Chandrabai, T. (2020). Improvement of California bearing ratio (CBR) value of steel fiber reinforced cement modified marginal soil for pavement subgrade admixed with fly ash. Materials Today: Proceedings, 31(Part 1), 639-642. https://doi.org/10.1016/j.matpr.2020.08.814

  • Preteseille, M., & Lenoir, T. (2016). Structural test at the laboratory scale for the utilization of stabilized fine-grained soils in the subgrades of high-speed rail infrastructures: Experimental aspects. International Journal of Fatigue, 82(Part 3), 505-513. https://doi.org/https://doi.org/10.1016/j.ijfatigue.2015.09.005

  • Preteseille, M., Lenoir, T., & Hornych, P. (2013). Sustainable upgrading of fine-grained soils present in the right-of-way of high speed rail projects. Construction and Building Materials, 44, 48-53. https://doi.org/10.1016/j.conbuildmat.2013.03.022

  • Punthutaecha, K., Puppala, A. J., Vanapalli, S. K., & Inyang, H. (2006). Volume change behaviors of expansive soils stabilized with recycled ashes and fibers. Journal of Materials in Civil Engineering, 18(2), 295-306.

  • Ramkrishnan, R., Sruthy, M. R., Sharma, A., & Karthik, V. (2018). Effect of random inclusion of sisal fibres on strength behavior and slope stability of fine grained soils. Materials Today: Proceedings, 5(11, Part 3), 25313-25322. https://doi.org/10.1016/j.matpr.2018.10.334

  • Ranjan, G., Vasan, R. M., & Charan, H. D. (1994). Behaviour of plastic-fibre-reinforced sand. Geotextiles and Geomembranes, 13(8), 555-565. https://doi.org/https://doi.org/10.1016/0266-1144(94)90019-1

  • Rivera-Gómez, C., Galán-Marín, C., & Bradley, F. (2014). Analysis of the influence of the fiber type in polymer matrix/fiber bond using natural organic polymer stabilizer. Polymers, 6(4), 977-994. https://doi.org/10.3390/polym6040977

  • Rizal, N. H. A., Hezmi, M. A., Razali, R., Wahab, N. A., Roshan, M. J., Rashid, A. S. A., & Hasbollah, D. Z. A. (2022). Effects of lime on the compaction characteristics of lateritic soil in UTM, Johor. In IOP Conference Series: Earth and Environmental Science, 971(1), Article 012031. IOP Publishing. https://doi.org/10.1088/1755-1315/971/1/012031

  • Roshan, M. J., A Rashid, A. S., Abdul Wahab, N., Tamassoki, S., Jusoh, S. N., Hezmi, M. A., Nik Daud, N. N., Mohd Apandi, N., & Azmi, M. (2022). Improved methods to prevent railway embankment failure and subgrade degradation: A review. Transportation Geotechnics, 37, Article 100834. https://doi.org/10.1016/J.TRGEO.2022.100834

  • Rosone, M., Ferrari, A., & Celauro, C. (2018). On the hydro-mechanical behaviour of a lime-treated embankment during wetting and drying cycles. Geomechanics for Energy and the Environment, 14, 48-60. https://doi.org/10.1016/j.gete.2017.11.001

  • Roustaei, M., Eslami, A., & Ghazavi, M. (2015). Effects of freeze–thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Regions Science and Technology, 120, 127-137. https://doi.org/10.1016/j.coldregions.2015.09.011

  • Saygili, A., & Dayan, M. (2019). Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers. Cold Regions Science and Technology, 161, 107-114. https://doi.org/10.1016/j.coldregions.2019.03.010

  • Senanayake, M., Arulrajah, A., Maghool, F., & Horpibulsuk, S. (2022). Evaluation of rutting resistance and geotechnical properties of cement stabilized recycled glass, brick and concrete triple blends. Transportation Geotechnics, 34, 100755. https://doi.org/10.1016/J.TRGEO.2022.100755

  • Shen, Y., Tang, Y., Yin, J., Li, M., & Wen, T. (2021). An experimental investigation on strength characteristics of fiber-reinforced clayey soil treated with lime or cement. Construction and Building Materials, 294, Article 123537. https://doi.org/10.1016/j.conbuildmat.2021.123537

  • Sobhan, K. (2008). Improving the tensile strength and toughness of a soil-cement-fly ash pavement subgrade with recycled HDPE strips. In GeoCongress 2008: Geosustainability and Geohazard Mitigation (pp. 1065-1072). American Society of Civil Engineers. https://doi.org/10.1061/40971(310)133

  • Sukontasukkul, P., & Jamsawang, P. (2012). Use of steel and polypropylene fibers to improve flexural performance of deep soil-cement column. Construction and Building Materials, 29, 201-205. https://doi.org/10.1016/j.conbuildmat.2011.10.040

  • Tajdini, M., Bonab, M. H., & Golmohamadi, S. (2018). An experimental investigation on effect of adding natural and synthetic fibres on mechanical and behavioural parameters of soil-cement materials. International Journal of Civil Engineering, 16(4), 353-370. https://doi.org/10.1007/s40999-016-0118-y

  • Tamassoki, S., Norsyahariati, N., Daud, N., Jakarni, F. M., Kusin, F. M., Safuan, A., Rashid, A., & Roshan, M. J. (2022a). Compressive and shear strengths of coir fibre reinforced Activated carbon stabilised Lateritic soil. Sustainability, 14(15), 9100. https://doi.org/10.3390/SU14159100

  • Tamassoki, S., Norsyahariati, N., Daud, N., Jakarni, F. M., Kusin, F. M., Safuan, A., Rashid, A., & Jawed Roshan, M. (2022b). Performance evaluation of lateritic subgrade soil treated with lime and coir fibre-activated carbon. Applied Sciences, 12(16), 8279. https://doi.org/10.3390/APP12168279

  • Ta’negonbadi, B., & Noorzad, R. (2017). Stabilization of clayey soil using lignosulfonate. Transportation Geotechnics, 12, 45-55. https://doi.org/10.1016/j.trgeo.2017.08.004

  • Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002

  • Thanushan, K., & Sathiparan, N. (2022). Mechanical performance and durability of banana fibre and coconut coir reinforced cement stabilized soil blocks. Materialia, 21, 101309. https://doi.org/10.1016/J.MTLA.2021.101309

  • Tharani, K., Selvan, G. P., Senbagam, T., & Karunakaran, G. (2021). An experimental investigation of soil stabilization using hybrid fibre and lime. Materials Today: Proceedings, 1-4. https://doi.org/10.1016/J.MATPR.2021.03.380

  • Tiwari, N., & Satyam, N. (2020). An experimental study on the behavior of lime and silica fume treated coir geotextile reinforced expansive soil subgrade. Engineering Science and Technology, an International Journal, 23(5), 1214-1222. https://doi.org/10.1016/j.jestch.2019.12.006

  • Valipour, M., Shourijeh, P. T., & Mohammadinia, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27, Article 100474. https://doi.org/10.1016/j.trgeo.2020.100474

  • Wahab, N. A., Rashid, A. S. A., Roshan, M. J., Rizal, N. H. A., Yunus, N. Z. M., Hezmi, M. A., & Tadza, M. Y. M. (2021). Effects of cement on the compaction properties of lateritic soil. In IOP Conference Series: Materials Science and Engineering, 1153(1), Article 012015. IOP Publishing. https://doi.org/10.1088/1757-899X/1153/1/012015

  • Wahab, N. A., Roshan, M. J., Rashid, A. S. A., Hezmi, M. A., Jusoh, S. N., Norsyahariati, N. D. N., & Tamassoki, S. (2021). Strength and durability of cement-treated lateritic soil. Sustainability, 13(11), Article 6430. https://doi.org/10.3390/su13116430

  • Wang, Y., Guo, P., Li, X., Lin, H., Liu, Y., & Yuan, H. (2019). Behavior of fiber-reinforced and lime-stabilized clayey soil in triaxial tests. Applied Sciences, 9(5), 900. https://doi.org/10.3390/app9050900

  • Yi, Y., Jiang, Y., Tian, T., Fan, J., Deng, C., & Xue, J. (2022). Mechanical-strength-growth law and predictive model for ultra-large size cement-stabilized macadam based on the vertical vibration compaction method. Construction and Building Materials, 324, Article 126691. https://doi.org/10.1016/J.CONBUILDMAT.2022.126691

  • Yldz, M., & Soǧanc, A. S. (2012). Effect of freezing and thawing on strength and permeability of lime-stabilized clays. Scientia Iranica, 19(4), 1013-1017. https://doi.org/10.1016/J.SCIENT.2012.06.003

  • Yoobanpot, N., Jamsawang, P., Poorahong, H., Jongpradist, P., & Likitlersuang, S. (2020). Multiscale laboratory investigation of the mechanical and microstructural properties of dredged sediments stabilized with cement and fly ash. Engineering Geology, 267, Article 105491. https://doi.org/10.1016/j.enggeo.2020.105491

  • Zare, P., Narani, S. S., Abbaspour, M., Fahimifar, A., Hosseini, S. M. M. M., & Zare, P. (2020). Experimental investigation of non-stabilized and cement-stabilized rammed earth reinforcement by Waste Tire Textile Fibers (WTTFs). Construction and Building Materials, 260, Article 120432. https://doi.org/10.1016/j.conbuildmat.2020.120432

  • Zhao, Y., Yang, Y., Ling, X., Gong, W., Li, G., & Su, L. (2021). Dynamic behavior of natural sand soils and fiber reinforced soils in heavy-haul railway embankment under multistage cyclic loading. Transportation Geotechnics, 28, Article 100507. https://doi.org/10.1016/J.TRGEO.2020.100507

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

J

Download Full Article PDF

Share this article

Recent Articles