PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 31 (1) Jan. 2023 / JST-3461-2022

 

Fibre-Reinforced Soil Mixed Lime/Cement Additives: A Review

Sakina Tamassoki, Nik Norsyahariati Nik Daud, Mohammad Nazir Nejabi and Mohammad Jawed Roshan

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 1, January 2023

DOI: https://doi.org/10.47836/pjst.31.1.14

Keywords: Brittleness, cement, fibre, lime, microstructure, reinforced, stabilized, strength behaviour

Published on: 3 January 2023

Soil modification is a technique for improving poor soil properties to make them suitable for engineering projects. Regarding the previous studies, various types of stabilisations were used to improve mechanical properties in soil. Several methodologies and experimental tests were used to study the positive and negative effects of utilising fibre on lime/cement-modified soil. This paper reviews the strength behaviour and microstructural properties of Fibre-Reinforced Lime Stabilised (FRLS) soil and Fibre-Reinforced Cement Stabilised (FRCS) Soil. First, the impact of FRLS/FRCS soil on strength behaviour under freeze-thaw conditions, the California Bearing Ratio (CBR) value, and compression/tensile strength are all examined. Then synthetic and natural fibres are compared at the microstructure level. FRCS/FRLS soil has been studied for its influence on geotechnical characteristics such as peak strength, residual strength, ductility, bearing capacity, stiffness, and settlement values. In addition, the micro-level evidence demonstrates that lime/cement affects the interlocking between soil particles and fibre. Although lime/cement improves soil strength by making it solid and compact, it makes stabilised soil brittle. Fibre as reinforcement in lime/cement stabilised soil transforms the brittleness of the soil into ductility. Hence building various infrastructures on poor soils is possible if fibre with lime/cement is used as an improvement method. Here, these three most used soil additive materials are investigated in terms of strength, microstructural, mineralisation, and some open issues are suggested for further research.

  • Abdi, M. M. R., Ghalandarzadeh, A., & Chafi, L. S. (2021). An investigation into the effects of lime on compressive and shear strength characteristics of fiber-reinforced clays. Journal of Rock Mechanics and Geotechnical Engineering, 13(4), 885-898. https://doi.org/10.1016/j.jrmge.2020.11.008

  • Al-Jabban, W., Laue, J., Knutsson, S., & Al-Ansari, N. (2019). A Comparative evaluation of cement and by-product Petrit T in soil stabilization. Applied Sciences, 9(23), Article 5238. https://doi.org/10.3390/app9235238

  • Al-Mukhtar, M., Lasledj, A., & Alcover, J. F. (2010). Behaviour and mineralogy changes in lime-treated expansive soil at 50°C. Applied Clay Science, 50(2), 199-203. https://doi.org/10.1016/j.clay.2010.07.022

  • Anggraini, V., Asadi, A., Syamsir, A., & Huat, B. B. K. (2017). Three point bending flexural strength of cement treated tropical marine soil reinforced by lime treated natural fiber. Measurement, 111, 158-166. https://doi.org/10.1016/j.measurement.2017.07.045

  • Ateş, A. (2016). Mechanical properties of sandy soils reinforced with cement and randomly distributed glass fibers (GRC). Composites Part B: Engineering, 96, 295-304. https://doi.org/10.1016/j.compositesb.2016.04.049

  • Behnood, A. (2018). Soil and clay stabilization with calcium- and non-calcium-based additives: A state-of-the-art review of challenges, approaches and techniques. Transportation Geotechnics, 17(Part A), 14-32. https://doi.org/10.1016/j.trgeo.2018.08.002

  • Boobalan, S. C., & Devi, M. S. (2022). Investigational study on the influence of lime and coir fiber in the stabilization of expansive soil. Materials Today: Proceedings, 60(Part 1), 311-314 https://doi.org/10.1016/J.MATPR.2022.01.230

  • Boz, A., & Sezer, A. (2018). Influence of fiber type and content on freeze-thaw resistance of fiber reinforced lime stabilized clay. Cold Regions Science and Technology, 151, 359-366. https://doi.org/10.1016/j.coldregions.2018.03.026

  • Boz, A., Sezer, A., Özdemir, T., Hızal, G. E., & Dolmacı, Ö. A. (2018). Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, 11(6), Article 122. https://doi.org/10.1007/s12517-018-3458-x

  • Broderick, G. P., & Daniel, D. E. (1990). Stabilizing compacted clay against chemical attack. Journal of Geotechnical Engineering, 116(10), 1549-1567. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:10(1549)

  • Cai, Y., Shi, B., Ng, C. W. W., & Tang, C. S. (2006). Effect of polypropylene fibre and lime admixture on engineering properties of clayey soil. Engineering Geology, 87(3-4), 230-240. https://doi.org/10.1016/j.enggeo.2006.07.007

  • Chen, H., & Wang, Q. (2006). The behaviour of organic matter in the process of soft soil stabilization using cement. Bulletin of Engineering Geology and the Environment, 65(4), 445-448. https://doi.org/10.1007/s10064-005-0030-1

  • Chew, S. H., Kamruzzaman, A. H. M., & Lee, F. H. (2004). Physicochemical and engineering behavior of cement treated clays. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 696-706. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(696)

  • Consoli, N. C., De Moraes, R. R., & Festugato, L. (2011). Split tensile strength of monofilament polypropylene fiber-reinforced cemented sandy soils. Geosynthetics International, 18(2), 57-62. https://doi.org/10.1680/gein.2011.18.2.57

  • Consoli, N. C., Montardo, J. P., Prietto, P. D. M., & Pasa, G. S. (2002). Engineering behavior of a sand reinforced with plastic waste. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), 462-472. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:6(462)

  • Correia, A. S. A. S., Oliveira, P. J. V., Odio, D. G. C., Oliveira, P. J. V., & Custódio, D. G. (2015). Effect of polypropylene fibres on the compressive and tensile strength of a soft soil, artificially stabilised with binders. Geotextiles and Geomembranes, 43(2), 97-106. https://doi.org/10.1016/j.geotexmem.2014.11.008

  • Dhar, S., & Hussain, M. (2019). The strength behaviour of lime-stabilised plastic fibre-reinforced clayey soil. Road Materials and Pavement Design, 20(8), 1757-1778. https://doi.org/10.1080/14680629.2018.1468803

  • Ding, M., Zhang, F., Ling, X., & Lin, B. (2018). Effects of freeze-thaw cycles on mechanical properties of polypropylene Fiber and cement stabilized clay. Cold Regions Science and Technology, 154, 155-165. https://doi.org/10.1016/j.coldregions.2018.07.004

  • Du, J., Liu, B., Wang, Z., Zheng, G., Jiang, N. J., Zhou, M., & Zhou, H. (2021). Dynamic behavior of cement-stabilized organic-matter-disseminated sand under cyclic triaxial condition. Soil Dynamics and Earthquake Engineering, 147, 106777. https://doi.org/10.1016/J.SOILDYN.2021.106777

  • Eskisar, T. (2015). Influence of cement treatment on unconfined compressive strength and compressibility of lean clay with medium plasticity. Arabian Journal for Science and Engineering, 40, 763-772. https://doi.org/10.1007/s13369-015-1579-z

  • Ghadakpour, M., Choobbasti, A. J., & Kutanaei, S. S. (2020). Investigation of the kenaf fiber hybrid length on the properties of the cement-treated sandy soil. Transportation Geotechnics, 22, Article 100301. https://doi.org/10.1016/j.trgeo.2019.100301

  • Ghazavi, M., & Roustaie, M. (2010). The influence of freeze-thaw cycles on the unconfined compressive strength of fiber-reinforced clay. Cold Regions Science and Technology, 61(2), 125-131. https://doi.org/10.1016/j.coldregions.2009.12.005

  • Ghobadi, M. H., Abdilor, Y., & Babazadeh, R. (2014). Stabilization of clay soils using lime and effect of pH variations on shear strength parameters. Bulletin of Engineering Geology and the Environment, 73, 611-619. https://doi.org/10.1007/S10064-013-0563-7

  • Güllü, H., & Khudir, A. (2014). Effect of freeze-thaw cycles on unconfined compressive strength of fine-grained soil treated with jute fiber, steel fiber and lime. Cold Regions Science and Technology, 106-107, 55-65. https://doi.org/10.1016/j.coldregions.2014.06.008

  • Hamidi, A., & Hooresfand, M. (2013). Effect of fiber reinforcement on triaxial shear behavior of cement treated sand. Geotextiles and Geomembranes, 36, 1-9. https://doi.org/10.1016/j.geotexmem.2012.10.005

  • Han, J. (2015). Principles and practice of ground improvement. John Wiley & Sons.

  • He, S., Wang, X., Bai, H., Xu, Z., & Ma, D. (2021). Effect of fiber dispersion, content and aspect ratio on tensile strength of PP fiber reinforced soil. Journal of Materials Research and Technology, 15, 1613-1621. https://doi.org/10.1016/J.JMRT.2021.08.128

  • Hejazi, S. M., Sheikhzadeh, M., Abtahi, S. M., & Zadhoush, A. (2012). A simple review of soil reinforcement by using natural and synthetic fibers. Construction and Building Materials, 30, 100-116. https://doi.org/10.1016/j.conbuildmat.2011.11.045

  • Jafari, M., & Esna-ashari, M. (2012). Effect of waste tire cord reinforcement on unconfined compressive strength of lime stabilized clayey soil under freeze-thaw condition. Cold Regions Science and Technology, 82, 21-29. https://doi.org/10.1016/j.coldregions.2012.05.012

  • Jairaj, C., Kumar, M. T. P., & Ramesh, H. N. (2020). Effect of addition of lime on coir fiber admixed BC soil. Innovative Infrastructure Solutions, 5, Article 49. https://doi.org/10.1007/s41062-020-00300-3

  • Jamsawang, P., Voottipruex, P., & Horpibulsuk, S. (2015). Flexural strength characteristics of compacted cement-polypropylene fiber sand. Journal of Materials in Civil Engineering, 27(9), Article 04014243. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001205

  • Kafodya, I., & Okonta, F. (2018). Effects of natural fiber inclusions and pre-compression on the strength properties of lime-fly ash stabilised soil. Construction and Building Materials, 170, 737-746. https://doi.org/10.1016/j.conbuildmat.2018.02.194

  • Kamaruddin, F. A., Nahazanan, H., Huat, B. K., & Anggraini, V. (2020). Improvement of marine clay soil using lime and alkaline activation stabilized with inclusion of treated coir fibre. Applied Sciences, 10(6), Article 2129. https://doi.org/10.3390/app10062129

  • Kravchenko, E., Liu, J., Krainiukov, A., & Chang, D. (2019). Dynamic behavior of clay modified with polypropylene fiber under freeze-thaw cycles. Transportation Geotechnics, 21, Article 100282. https://doi.org/10.1016/j.trgeo.2019.100282

  • Kumar, A., & Gupta, D. (2016). Behavior of cement-stabilized fiber-reinforced pond ash, rice husk ash-soil mixtures. Geotextiles and Geomembranes, 44(3), 466-474. https://doi.org/10.1016/j.geotexmem.2015.07.010

  • Kutanaei, S. S., & Choobbasti, A. J. (2017). Effects of nanosilica particles and randomly distributed fibers on the ultrasonic pulse velocity and mechanical properties of cemented sand. Journal of Materials in Civil Engineering, 29(3), Article 4016230.

  • Labiad, Y., Meddah, A., & Beddar, M. (2022). Physical and mechanical behavior of cement-stabilized compressed earth blocks reinforced by sisal fibers. Materials Today: Proceedings, 53(Part 1), 139-143. https://doi.org/10.1016/J.MATPR.2021.12.446

  • Lee, M. K., & Barr, B. I. G. (2004). An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cement and Concrete Composites, 26(4), 299-305. https://doi.org/10.1016/S0958-9465(02)00139-7

  • Lenoir, T., Preteseille, M., & Ricordel, S. (2016). Contribution of the fiber reinforcement on the fatigue behavior of two cement-modified soils. International Journal of Fatigue, 93(Part1), 71-81. https://doi.org/10.1016/j.ijfatigue.2016.08.007

  • Li, M., Chai, S. X., Zhang, H. Y., Du, H. P., & Wei, L. (2012). Feasibility of saline soil reinforced with treated wheat straw and lime. Soils and Foundations, 52(2), 228-238. https://doi.org/10.1016/j.sandf.2012.02.003

  • Little, D. N., & Nair, S. (2009). Recommended practice for stabilization of subgrade soils and base materials. National Academies Press. https://doi.org/10.17226/22999

  • Miller, C. J., & Rifai, S. (2004). Fiber reinforcement for waste containment soil liners. Journal of Environmental Engineering, 130(8), 891-895.

  • Mishra, B., & Gupta, M. K. (2018). Use of randomly oriented polyethylene terephthalate (PET) fiber in combination with fly ash in subgrade of flexible pavement. Construction and Building Materials, 190, 95-107. https://doi.org/10.1016/j.conbuildmat.2018.09.074

  • Mobini, M., Khaloo, A., Hosseini, P., & Esrafili, A. (2015). Mechanical properties of fiber-reinforced high-performance concrete incorporating pyrogenic nanosilica with different surface areas. Construction and Building Materials, 101(Part 1), 130-140. https://doi.org/10.1016/j.conbuildmat.2015.10.032

  • Moghal, A. A. B., Chittoori, B. C. S., & Basha, B. M. (2018). Effect of fibre reinforcement on CBR behaviour of lime-blended expansive soils: Reliability approach. Road Materials and Pavement Design, 19(3), 690-709. https://doi.org/10.1080/14680629.2016.1272479

  • Narani, S. S., Abbaspour, M., Hosseini, S. M. M. M., & Nejad, F. M. (2020). Long-term dynamic behavior of a sandy subgrade reinforced by Waste Tire Textile Fibers (WTTFs). Transportation Geotechnics, 24, Article 100375. https://doi.org/https://doi.org/10.1016/j.trgeo.2020.100375

  • Oliveira, P. J. V., Correia, A. A. S., Teles, J. M. N. P. C., & Custódio, D. G. (2016). Effect of fibre type on the compressive and tensile strength of a soft soil chemically stabilised. Geosynthetics International, 23(3), 171-182. https://doi.org/10.1680/jgein.15.00040

  • Onyejekwe, S., & Ghataora, G. S. (2014). Effect of fiber inclusions on flexural strength of soils treated with nontraditional additives. Journal of Materials in Civil Engineering, 26(8), Article 4014039.

  • Osinubi, K. J., Ijmdiya, T. S., & Nmadu, I. (2009). Lime stabilization of black cotton soil using bagasse ash as admixture. Advanced Materials Research, 62-64, 3-10. https://doi.org/10.4028/www.scientific.net/amr.62-64.3

  • Otoko, G. R., & Pedro, P. P. (2014). Cement stabilization of Laterite and Chikoko soils using waste rubber fibre. International Journal of Engineering Sciences & Research Technology, 3(10), 130-136.

  • Petry, T. M., & Little, D. N. (2002). Review of stabilization of clays and expansive soils in pavements and lightly loaded structures - History, practice, and future. Journal of Materials in Civil Engineering, 14(6), 447-460. https://doi.org/10.1061/(ASCE)0899-1561(2002)14:6(447)

  • Praveen, G. V., & Kurre, P. (2020). Influence of coir fiber reinforcement on shear strength parameters of cement modified marginal soil mixed with fly ash. Materials Today: Proceedings, 39(Part 1), 504-507. https://doi.org/10.1016/j.matpr.2020.08.238

  • Praveen, G. V, Kurre, P., & Chandrabai, T. (2020). Improvement of California bearing ratio (CBR) value of steel fiber reinforced cement modified marginal soil for pavement subgrade admixed with fly ash. Materials Today: Proceedings, 31(Part 1), 639-642. https://doi.org/10.1016/j.matpr.2020.08.814

  • Preteseille, M., & Lenoir, T. (2016). Structural test at the laboratory scale for the utilization of stabilized fine-grained soils in the subgrades of high-speed rail infrastructures: Experimental aspects. International Journal of Fatigue, 82(Part 3), 505-513. https://doi.org/https://doi.org/10.1016/j.ijfatigue.2015.09.005

  • Preteseille, M., Lenoir, T., & Hornych, P. (2013). Sustainable upgrading of fine-grained soils present in the right-of-way of high speed rail projects. Construction and Building Materials, 44, 48-53. https://doi.org/10.1016/j.conbuildmat.2013.03.022

  • Punthutaecha, K., Puppala, A. J., Vanapalli, S. K., & Inyang, H. (2006). Volume change behaviors of expansive soils stabilized with recycled ashes and fibers. Journal of Materials in Civil Engineering, 18(2), 295-306.

  • Ramkrishnan, R., Sruthy, M. R., Sharma, A., & Karthik, V. (2018). Effect of random inclusion of sisal fibres on strength behavior and slope stability of fine grained soils. Materials Today: Proceedings, 5(11, Part 3), 25313-25322. https://doi.org/10.1016/j.matpr.2018.10.334

  • Ranjan, G., Vasan, R. M., & Charan, H. D. (1994). Behaviour of plastic-fibre-reinforced sand. Geotextiles and Geomembranes, 13(8), 555-565. https://doi.org/https://doi.org/10.1016/0266-1144(94)90019-1

  • Rivera-Gómez, C., Galán-Marín, C., & Bradley, F. (2014). Analysis of the influence of the fiber type in polymer matrix/fiber bond using natural organic polymer stabilizer. Polymers, 6(4), 977-994. https://doi.org/10.3390/polym6040977

  • Rizal, N. H. A., Hezmi, M. A., Razali, R., Wahab, N. A., Roshan, M. J., Rashid, A. S. A., & Hasbollah, D. Z. A. (2022). Effects of lime on the compaction characteristics of lateritic soil in UTM, Johor. In IOP Conference Series: Earth and Environmental Science, 971(1), Article 012031. IOP Publishing. https://doi.org/10.1088/1755-1315/971/1/012031

  • Roshan, M. J., A Rashid, A. S., Abdul Wahab, N., Tamassoki, S., Jusoh, S. N., Hezmi, M. A., Nik Daud, N. N., Mohd Apandi, N., & Azmi, M. (2022). Improved methods to prevent railway embankment failure and subgrade degradation: A review. Transportation Geotechnics, 37, Article 100834. https://doi.org/10.1016/J.TRGEO.2022.100834

  • Rosone, M., Ferrari, A., & Celauro, C. (2018). On the hydro-mechanical behaviour of a lime-treated embankment during wetting and drying cycles. Geomechanics for Energy and the Environment, 14, 48-60. https://doi.org/10.1016/j.gete.2017.11.001

  • Roustaei, M., Eslami, A., & Ghazavi, M. (2015). Effects of freeze–thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Regions Science and Technology, 120, 127-137. https://doi.org/10.1016/j.coldregions.2015.09.011

  • Saygili, A., & Dayan, M. (2019). Freeze-thaw behavior of lime stabilized clay reinforced with silica fume and synthetic fibers. Cold Regions Science and Technology, 161, 107-114. https://doi.org/10.1016/j.coldregions.2019.03.010

  • Senanayake, M., Arulrajah, A., Maghool, F., & Horpibulsuk, S. (2022). Evaluation of rutting resistance and geotechnical properties of cement stabilized recycled glass, brick and concrete triple blends. Transportation Geotechnics, 34, 100755. https://doi.org/10.1016/J.TRGEO.2022.100755

  • Shen, Y., Tang, Y., Yin, J., Li, M., & Wen, T. (2021). An experimental investigation on strength characteristics of fiber-reinforced clayey soil treated with lime or cement. Construction and Building Materials, 294, Article 123537. https://doi.org/10.1016/j.conbuildmat.2021.123537

  • Sobhan, K. (2008). Improving the tensile strength and toughness of a soil-cement-fly ash pavement subgrade with recycled HDPE strips. In GeoCongress 2008: Geosustainability and Geohazard Mitigation (pp. 1065-1072). American Society of Civil Engineers. https://doi.org/10.1061/40971(310)133

  • Sukontasukkul, P., & Jamsawang, P. (2012). Use of steel and polypropylene fibers to improve flexural performance of deep soil-cement column. Construction and Building Materials, 29, 201-205. https://doi.org/10.1016/j.conbuildmat.2011.10.040

  • Tajdini, M., Bonab, M. H., & Golmohamadi, S. (2018). An experimental investigation on effect of adding natural and synthetic fibres on mechanical and behavioural parameters of soil-cement materials. International Journal of Civil Engineering, 16(4), 353-370. https://doi.org/10.1007/s40999-016-0118-y

  • Tamassoki, S., Norsyahariati, N., Daud, N., Jakarni, F. M., Kusin, F. M., Safuan, A., Rashid, A., & Roshan, M. J. (2022a). Compressive and shear strengths of coir fibre reinforced Activated carbon stabilised Lateritic soil. Sustainability, 14(15), 9100. https://doi.org/10.3390/SU14159100

  • Tamassoki, S., Norsyahariati, N., Daud, N., Jakarni, F. M., Kusin, F. M., Safuan, A., Rashid, A., & Jawed Roshan, M. (2022b). Performance evaluation of lateritic subgrade soil treated with lime and coir fibre-activated carbon. Applied Sciences, 12(16), 8279. https://doi.org/10.3390/APP12168279

  • Ta’negonbadi, B., & Noorzad, R. (2017). Stabilization of clayey soil using lignosulfonate. Transportation Geotechnics, 12, 45-55. https://doi.org/10.1016/j.trgeo.2017.08.004

  • Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002

  • Thanushan, K., & Sathiparan, N. (2022). Mechanical performance and durability of banana fibre and coconut coir reinforced cement stabilized soil blocks. Materialia, 21, 101309. https://doi.org/10.1016/J.MTLA.2021.101309

  • Tharani, K., Selvan, G. P., Senbagam, T., & Karunakaran, G. (2021). An experimental investigation of soil stabilization using hybrid fibre and lime. Materials Today: Proceedings, 1-4. https://doi.org/10.1016/J.MATPR.2021.03.380

  • Tiwari, N., & Satyam, N. (2020). An experimental study on the behavior of lime and silica fume treated coir geotextile reinforced expansive soil subgrade. Engineering Science and Technology, an International Journal, 23(5), 1214-1222. https://doi.org/10.1016/j.jestch.2019.12.006

  • Valipour, M., Shourijeh, P. T., & Mohammadinia, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27, Article 100474. https://doi.org/10.1016/j.trgeo.2020.100474

  • Wahab, N. A., Rashid, A. S. A., Roshan, M. J., Rizal, N. H. A., Yunus, N. Z. M., Hezmi, M. A., & Tadza, M. Y. M. (2021). Effects of cement on the compaction properties of lateritic soil. In IOP Conference Series: Materials Science and Engineering, 1153(1), Article 012015. IOP Publishing. https://doi.org/10.1088/1757-899X/1153/1/012015

  • Wahab, N. A., Roshan, M. J., Rashid, A. S. A., Hezmi, M. A., Jusoh, S. N., Norsyahariati, N. D. N., & Tamassoki, S. (2021). Strength and durability of cement-treated lateritic soil. Sustainability, 13(11), Article 6430. https://doi.org/10.3390/su13116430

  • Wang, Y., Guo, P., Li, X., Lin, H., Liu, Y., & Yuan, H. (2019). Behavior of fiber-reinforced and lime-stabilized clayey soil in triaxial tests. Applied Sciences, 9(5), 900. https://doi.org/10.3390/app9050900

  • Yi, Y., Jiang, Y., Tian, T., Fan, J., Deng, C., & Xue, J. (2022). Mechanical-strength-growth law and predictive model for ultra-large size cement-stabilized macadam based on the vertical vibration compaction method. Construction and Building Materials, 324, Article 126691. https://doi.org/10.1016/J.CONBUILDMAT.2022.126691

  • Yldz, M., & Soǧanc, A. S. (2012). Effect of freezing and thawing on strength and permeability of lime-stabilized clays. Scientia Iranica, 19(4), 1013-1017. https://doi.org/10.1016/J.SCIENT.2012.06.003

  • Yoobanpot, N., Jamsawang, P., Poorahong, H., Jongpradist, P., & Likitlersuang, S. (2020). Multiscale laboratory investigation of the mechanical and microstructural properties of dredged sediments stabilized with cement and fly ash. Engineering Geology, 267, Article 105491. https://doi.org/10.1016/j.enggeo.2020.105491

  • Zare, P., Narani, S. S., Abbaspour, M., Fahimifar, A., Hosseini, S. M. M. M., & Zare, P. (2020). Experimental investigation of non-stabilized and cement-stabilized rammed earth reinforcement by Waste Tire Textile Fibers (WTTFs). Construction and Building Materials, 260, Article 120432. https://doi.org/10.1016/j.conbuildmat.2020.120432

  • Zhao, Y., Yang, Y., Ling, X., Gong, W., Li, G., & Su, L. (2021). Dynamic behavior of natural sand soils and fiber reinforced soils in heavy-haul railway embankment under multistage cyclic loading. Transportation Geotechnics, 28, Article 100507. https://doi.org/10.1016/J.TRGEO.2020.100507