Home / Regular Issue / JTAS Vol. 31 (6) Oct. 2023 / JST-3980-2022

 

Effect of Lysine and Poultry Slaughterhouse by Product Meal on Growth Performance, Feed Efficiency, and Blood Profile of Sangkuriang Catfish (Clarias gariepinus var. Sangkuriang)

Diana Rachmawati, Tita Elfitasari, Istiyanto Samidjan, Putut Har Riyadi and Dewi Nurhayati

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 6, October 2023

DOI: https://doi.org/10.47836/pjst.31.6.07

Keywords: Feed, food efficiency, growth, lysine, nutrient

Published on: 12 October 2023

The increasing demand for livestock and poultry feeds results in the lack of fish meals (FM). Poultry slaughterhouse by-product (PSB) is one promising strategy due to its high protein content despite the limited content of lysine. Thus, supplementing lysine in dietary fish feed is necessary. The present study aimed to investigate how different lysine doses in feed with PSB and FM as animal protein sources affected protein digestibility, feed utilization, growth, hematology, and body composition of Sangkuriang catfish (Clarias gariepinus var. Sangkuriang). Sangkuriang catfish at the grow-out stage (15.54±0.17 g/fish) were used. The fish were fed six experimental diets with similar protein and energy content but different lysine levels at 1.25%, 1.75%, 2.25%, 2.75%, 3.25%, and 3.75%/kg (treatments 1 to 6). The addition of lysine to feed had a significant (P<0.05) effect on protein digestibility (ADCp), efficiency of feed utilization (EFU), and relative growth rate (RGR) of Sangkuriang catfish at a grow-out stage but had no significant (P>0.05) effect on survival rate, hematology, and nutrient content. The optimal doses of dietary lysine with PSB and FM to improve ADCp, EFU, and RGR of Sangkuriang catfish were 2.59%, 2.63%, and 2.62%/kg diet, respectively. However, the supplementation of PSB in experimental diets had no significant effect on glucose, triglyceride, total protein, urea, calcium, magnesium, albumin, globulin, hemoglobin, hematocrit, phosphorous, and mean corpuscular hemoglobin concentration (MCHC). The lysine addition in feed formulated with PSB and FM could improve the growth performance and increase the feed digestibility of Sangkuriang catfish at the grow-out stage.

  • Akbary, P., Hosseini, S. A., & Imanpoor, M. R. (2011). Enrichment of artemia nauplii with essential fatty acids and vitamin C: Effect on rainbow trout (Oncorhynchus mykiss) larvae performance. Iranian Journal of Fisheries Sciences, 10(4), 557-569.

  • Aristasari, E., Nur‘Aini, R. A., Nopita, W., Agustono, A., Lamid, M., & Al-Arif, M. A. (2020). The growth, protein content, and fatty acid of catfish meat (Pangasius sp.) with the addition of different lysine doses in commercial feed. IOP Conference Series: Earth and Environmental Science, 441(1), 1-7. https://doi.org/10.1088/1755-1315/441/1/012018

  • Barros, M. M., Lim, C., Evans, J. J., & Klesius, P. H. (2002). Effect of iron supplementation to cotton seed meal diets on growth performance of channel cat fish, Ictalurus punctatus. Journal of Applied Aquaculture, 10(1), 86-92. https://doi.org/10.1300/J028v10n01_07

  • Bicudo, A. J. A., Sado, R. Y., & Cyrino, J. E. P. (2009). Dietary lysine requirement of juvenile pacu Piaractus mesopotamicus (Holmberg, 1887). Aquaculture, 297(1-4), 151-156. https://doi.org/10.1016/j.aquaculture.2009.09.031

  • Blaxhall, P.C., & Daisley, K.W. (1973). Routine hematological methods for use fish with blood. Fish Biology, 5(6), 771-781. https://doi.org/10.1111/j.1095-8649.1973.tb04510.x

  • Boyd, C. E. (2003). Guidelines for aquaculture effluent management at the farm level. Aquaculture, 226(1-4), 101-112. https://doi.org/10.1016/S0044-8486(03)00471-X

  • Dacie, J. V., & Lewis, S. M. (1991). Practical Hematology. Churchill Livingstone.

  • de Vareilles, M., Conceição, L. E. C., Gómez-Requeni, P., Kousoulaki, K., Richard, N., Rodrigues, P. M., & Rønnestad, I. (2012). Dietary lysine imbalance affects muscle proteome in zebrafish (Danio rerio): A comparative 2D-DIGE study. Marine Biotechnology, 14(5), 643-654. https://doi.org/10.1007/s10126-012-9462-3

  • El-Husseiny, M. O., Hassan, M. I., El-Haroun, E. R., & Suloma, A. (2018). Utilization of poultry by-product meal supplemented with L-lysine as fish meal replacer in the diet of African catfish Clarias gariepinus (Burchell, 1822). Journal of Applied Aquaculture, 30(1), 63-75. https://doi.org/10.1080/10454438.2017.1412844

  • Farhat, F., & Khan, M. A. (2013). Dietary L-lysine requirement of fingerling stinging catfish, Heteropneustes fossilis (Bloch) for optimizing growth, fish meal conversion, protein and lysine deposition. Aquaculture Research, 44(4), 523-533. https://doi.org/10.1111/j.1365- 2109.2011.03054.x.

  • Fenucci, J. L. (1981). Studies on the nutrition of marine shrimp of the Penaeus [Unpublished Doctoral dissertation]. University of Houston, Texas.

  • Gaylord, T. G., Barrows, F. T., Teague, A. M., Johansen, K. A., Overturf, K. E., & Shepherd, B. (2007). Supplementation of taurine and methionine to all-plant protein diets for rainbow trout (Oncorhynchus mykiss). Aquaculture, 269(1-4), 514-524. https://doi.org/10.1016/j.aquaculture.2007.04.011

  • Hansen, A. C., Rosenlund, G., Karslen, O., Koppe, W., & Hemre, G. I. (2007). Total replacementof fishmeal with plant proteins in diets for atlantic cod (Gadus morhua L.) I: Effects on growth and protein retention. Aquaculture, 272(1-4), 599-611. https://doi.org/10.1016/j.aquaculture.2007.08.034

  • Hernández, C., Osuna-Osuna, L., Benitez-Hernandez, A., Sanchez-Gutierrez, Y., González-Rodríguez, B., & Dominguez-Jimenez, P. (2014). Replacement of fish meal by poultry by-product meal, food grade, in diets for juvenile spotted rose snapper (Lutjanus guttatus). Latin American Journal of Aquatic Research, 42(1), 111-120. http://dx.doi.org/10.3856/vol42-issue1-fulltext-8

  • Horwitz, W. (Ed.). (1975). Official Methods of Analysis (12th ed.). Association of Official Analytical Chemists.

  • Jiang, J., Shi, D., Zhou, X. Q., Feng, L., Liu, Y., Jiang, W. D., & Zhao, Y. (2015). Effects of lysine and methionine supplementation on growth, body composition and digestive function of grass carp (Ctenopharyngodon idella) fed plant protein diets using high-level canola meal. Aquaculture Nutrition, 22(5), 1126-1133. https://doi.org/10.1111/anu.12339

  • Katan, T., Xue, X., Caballero-Solares, A., Taylor, R. G., Rise, M. L., & Parrish, C. C. (2020). Influence of dietary long-chain polyunsaturated fatty acids and ω6 to ω3 ratios on head kidney lipid composition and expression of fatty acid and eicosanoid metabolism genes in atlantic salmon (Salmo salar). Frontiers in Molecular Biosciences, 7, 1-17. https://doi.org/10.3389/fmolb.2020.602587

  • Khan, M. A., & Abidi, S. F. (2011). Dietary arginine requirement of Heteropneustes fossilis fry (Bloch) based on growth, nutrient retention and hematological parameters. Aquaculture Nutrition 17(4), 418-428. https://doi.org/10.1111/j.1365-2095.2010.00819.x

  • Kjaer, M. A., Todorčević, M., Torstensen, B. E., Vegusdal, A., & Ruyter, B. (2008). Dietary n−3 HUFA affects mitochondrial fatty acid beta-oxidation capacity and susceptibility to oxidative stress in Atlantic salmon. Lipids, 43(9), 813-827. https://doi.org/10.1007/s11745-008-3208-z

  • Kumar, S., Sahu, N. P., Pal, A. K., Choudhury, D., Yengkokpam, S., & Mukherjee, S. C. (2005). Effect of dietary carbohydrate on hematology, respiratory burst activity and histological changes in L. rohita juveniles. Fish & Shellfish Immunology, 19(4), 331-334. https://doi.org/10.1016/j.fsi.2005.03.001

  • Lu, J., Hua, Y., Fu, W. Z., Zhou, F., Yang, B. B., Xiao, J. X., & Shao, Q. J. (2014). Effects of supplementation coated lysine and methionine in mixture protein diets on growth performance, digestibility and serum biochemical indices of juvenile black sea bream, Acanthopagrus schlegelii. Turkish Journal of Fisheries and Aquatic Sciences, 14(3), 633-642. http://dx.doi.org/10.4194/1303-2712-v14_3_05

  • Mai, K. S., Zhang, L., Ai, Q. H., Duan, A. Y., Zhang, C. X., Li, H. T., Wan, J. L., & Liufu, Z. G. (2006). Dietary lysine requirement of juvenile Japanese seabass, (Lateolabrax japonicus). Aquaculture, 258(1-4), 535–542. https://doi.org/10.1016/j.aquaculture.2006.04.043

  • Marchao, R. S., Ribeiro, F. B., de Siqueira, J. C., Bomfim, M. A. D., Silva, J. C., de Sousa, T. J. R., & da Costa Sousa, M. (2020). Digestible lysine requirement for tambaqui (Colossoma macropomum) juveniles using the diet dilution technique. Aquaculture Reports, 18, 1-7. http://dx.doi.org/10.1016/j.aqrep.2020.100482

  • Mozanzadeh, M. T., Agh, N., Yavari, V., Marammazi, J. G., Mohammadian, T., & Gisbert, E. (2016). Partial or total replacement of dietary fish oil with alternative lipid sources in silvery- black porgy (Sparidentex hasta). Aquaculture, 451, 232-240. https://doi.org/10.1016/j.aquaculture.2015.09.022

  • Mozanzadeh, M. T., Marammazi, J. G., Yaghoubi, M., Yavari, V., Agh, N., & Gisbert, E. (2015). Somatic and physiological responses to cyclic fasting and re-feeding periods in sobaity sea bream (Sparidentex hasta, Valenciennes 1830). Aquaculture Nutrition, 23(1), 181-191. https://doi.org/10.1111/anu.12379

  • Nguyen, L., & Davis, D. A. (2016). Comparison of crystalline lysine and intact lysine used as a supplement in practical diets of channel catfish (Ictalurus punctatus) and nile tilapia (Oreochromis niloticus). Aquaculture, 464, 331-339. https://doi.org/10.1016/j. aquaculture.2016.07.005.

  • Nose, T., Arais, S., Lee, D. L., & Hashimoto, Y. (1974). A note on amino acids essential for growth of young carp. Bulletin of the Japanese Society of Scientific Fisheries, 40, 903-908. https://doi.org/10.2331/SUISAN.40.903

  • National Research Council. (2011). Nutrient Requirements of Fish and Shrimp. National Academy Press.

  • Obado, E., Sabwa, J. A., Raburu, P., Manyala, J., Ngugi, C., Fitzsimmons, K. M., & Egna, H. (2018). Effects of lysine and methionine supplementation and cost effectiveness in production of nile tilapia diets (Oreochromis niloticus) in Western Kenya. International Journal of Research Science & Management, 5(3), 12-23. http://dx.doi.org/10.5281/zenodo.1193968

  • Pérez-Jiménez, A., Peres, H., & Oliva-Teles, A. (2014). Effective replacement of protein-bound amino acids by crystalline amino acids in senegalese sole (Solea senegalensis) juveniles. Aquaculture Nutrition, 20(1), 60-68. https://doi.org/10.1111/anu.12052

  • Putra, L. V. D., Agustono, U., & Kenconojati, S. H. (2019). The effect of adding lysine in commercial feed on growth rate, feed efficiency, and feed convertion ratio to tambaqui (Colossoma Macropomum). IOP Conference Series: Earth and Environmental Science, 236(1), 1-6. https://doi.org/10.1088/1755-1315/236/1/012076

  • Rachmawati, D., Hutabarat, J., Samidjan, I., & Windarto, S. (2019). The effects of papain enzyme-enriched diet on protease enzyme activities, feed efficiency, and growth of fingerlings of sangkuriang catfish (Clarias gariepinus) reared in tarpaulin pool. AACL Bioflux, 12(6), 2177-2187.

  • Rachmawati, D., Istiyanto, S., & Mel, M. (2017). Effect of phytase on growth performance, feed utilization efficiency and nutrient digestibility in fingerlings of Chanos chanos (Forsskal 1775). Philippine Journal of Science, 146(3), 237-245.

  • Rachmawati, D., Sarjito, S., Samidjan, I., Nurhayati, D., & Riyadi, P. H. (2022). Effects of yeast on the growth performance of sangkuriang catfish fingerlings (Clarias gariepinus var. Sangkuriang). Pertanika Journal of Tropical Agricultural Science, 45(1), 273-284. https://doi.org/10.47836/pjtas.45.1.16

  • Rawles, S. D., Thompson, K. R., Brady, Y. J., Metts, L. S., Aksoy, M. Y., Gannam, A. L., Twibell, R. G., & Webster, C. D. (2011). Effects of replacing fish meal with poultry by-product meal and soybean meal and reduced protein level on the performance and immune status of pond-grown sunshine bass (Moronechrysops × M. saxatilis). Aquaculture Nutrition, 17(3), 708-721. https://doi.org/10.1111/j.1365-2095.2010.00831.x

  • Srour, T. M., Essa, M. A., Abdel-Rahim, M. M., & Mansour, M. A. (2016). Replacement of fish meal with poultry by-product meal (PBM) and its effects on the survival, growth, feed utilization, and microbial load of European Seabass, Dicentrarchus Labrax fry. Global Advanced Research Journal of Agricultural Science, 5(7), 293-301.

  • Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1996). Principles and Procedures of Statistics: A Biometrical Approach (3rd ed.) McGraw Hill, Inc.

  • Suloma, A., El-Husseiny, O. M., Hassane, M. I., Mabroke, R. S., & El-Haroun, E. R. (2014). Complementary responses between hydrolyzed feather meal, fish meal and soybean meal without amino acid supplementation in nile tilapia Oreochromis niloticus diets. Aquaculture International, 22, 1377-1390. https://doi.org/10.1007/s10499-014-9753-y

  • Walton, M. J., Cowey, C. B., & Adron, J. W. (1984). The effect of dietary lysine levels on growth and metabolism of rainbow trout (Salmo gairdneri). British Journal of Nutrition, 52(1), 115-122. https://doi.org/10.1079/bjn19840077

  • Wilson, R. P., Harding, E., & Garling Jr, D. L. (1977). Effect of dietary pH on amino acid utilization and the lysine requirement of fingerling channel catfish. Journal of Nutrition, 107(1), 166-170. https://doi.org/10.1093/jn/107.1.166

  • Xie, F., Ai, Q., Mai, K., Xu, W., & Wang, X. (2012). Dietary lysine requirement of large yellow croaker (Pseudosciaena crocea, Richardson 1846) larvae. Aquaculture Research, 43(6), 917-928. https://doi.org/10.1111/j.1365-2109.2011.02906.x

  • Yaghoubi, M., Mozanzadeh, M. T., Marammazi, J. G., Safari, O., & Gisbert, E. (2016). Dietary replacement of fish meal by soy products (soybean meal and isolated soy protein) in silvery- black porgy juveniles (Sparidentex hasta). Aquaculture, 464, 50-59. https://doi.org/10.1016/j.aquaculture.2016.06.002

  • Yones, A. M. M., & Metwalli, A. A. (2015). Effects of fish meal substitution with poultry by-product meal on growth performance, nutrients utilization and blood contents of juvenile nile tilapia (Oreochromis niloticus). Journal of Aquaculture Research & Development, 7(1), 2-6. http://dx.doi.org/10.4172/2155-9546.1000389

  • Zhou, F., Shao, J., Xu, Z., Ma, J., & Xu, Z. (2010). Quantitative L-lysine requirement of juvenile black sea bream (Sparus macrocephalus). Aquaculture Nutrition, 16(2), 194-204. https://doi.org/10.1111/j.1365-2095.2009.00651.x

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JST-3980-2022

Download Full Article PDF

Share this article

Related Articles