Home / Regular Issue / JTAS Vol. 32 (1) Jan. 2024 / JST-4218-2023

 

Proportions of Green Area and Tree Health on University Campus: The Impact of Pavement Presence

Nur Ain Aiman Abd Rahim, Rahmad Zakaria, Asyraf Mansor, Mohd Ashraf Mohamad Ismail and Nik Fadzly N Rosely

Pertanika Journal of Tropical Agricultural Science, Volume 32, Issue 1, January 2024

DOI: https://doi.org/10.47836/pjst.32.1.11

Keywords: Green areas, non-paved, normalised difference vegetation index, paved, tree health, visual tree analysis

Published on: 15 January 2024

Sustainable urban ecosystems require healthy green spaces that provide ecological services to meet social and environmental needs. This study evaluates the proportion of green areas in the urban campus and assesses the effects of pavement on the health of Samanea saman. The MAPIR Normalised Difference Vegetation Index (NDVI) camera mounted on a drone captured a proportion of green areas of approximately 27.80%, which is roughly a quarter of the total study sites. However, the significance of green areas depends on the health of the trees. Therefore, the pavement effects on the health status of trees in green areas were studied using Visual Tree Assessment (VTA) and aerial image analysis using the MAPIR (NDVI) camera on a drone. Although both methods evaluate health status, the final outputs differed. VTA produced categorical outputs, which assigned trees into health categories based on a visual assessment of factors. In contrast, NDVI produced linear outputs, which provided a numerical value to demonstrate tree health. Both methods indicate that trees in non-paved areas are healthier, particularly for the excellent trees identified by the VTA, which suggests that pavement negatively impacts tree health. However, the effects of paved and non-paved areas on tree health status analysis using the aerial image are not significant (p>0.05), which may be due to the low quality and accuracy of the images. The study provides insights into the importance of green areas and tree health in creating sustainable urban ecosystems.

  • Assmann, J. J., Kerby, J. T., Cunliffe, A. M., & Myers-Smith, I. H. (2019). Vegetation monitoring using multispectral sensors - best practices and lessons learned from high latitudes. Journal of Unmanned Vehicle Systems, 7(1), 54-75. https://doi.org/10.1139/juvs-2018-0018

  • Bihuňová, M., Supuka, J., Tóth, A., Šinka, K., & Kuczman, G. (2021). Urban green areas and woody plant composition: Dwelling space quality factor in the Klokočina Housing Estate. Ekológia(Bratislava), 40(1), 80-90. https://doi.org/10.2478/eko-2021-0010

  • Booth, D. T., Cox, S. E., Meikle, T., & Zuuring, H. R. (2008). Ground-cover measurements: Assessing correlation among aerial and ground-based methods. Environmental Management, 42(6), 1091-1100. https://doi.org/10.1007/S00267-008-9110-X/TABLES/5

  • Cheela, V. R. S., John, M., Biswas, W., & Sarker, P. (2021). Combating urban heat island effect - A review of reflective pavements and tree shading strategies. Buildings, 11(3), 1-21. https://doi.org/10.3390/BUILDINGS11030093

  • Chen, Y., Wang, X., Jiang, B., & Li, L. (2018). The leaf phenophase of deciduous species altered by land pavements. International Journal of Biometeorology, 62(6), 949-959. https://doi.org/10.1007/s00484-018-1497-3

  • Colomina, I., & Molina, P. (2014). Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 92, 79-97. https://doi.org/10.1016/j.isprsjprs.2014.02.013

  • Conway, T. M., & Yip, V. (2016). Assessing residents’ reactions to urban forest disservices: A case study of a major storm event. Landscape and Urban Planning, 153, 1-10. https://doi.org/10.1016/j.landurbplan.2016.04.016

  • de La Barra, J. R., Ponce-Donoso, M., Vallejos-Barra, O., Daniluk-Mosquera, G., & Coelho Duarte, A. P. (2018). Comparison of four methods of visual risk tree assessment in urban areas. Colombia Forestal, 21(2), 161-173. https://doi.org/10.14483/2256201X.12604

  • de la Mota Daniel, F. J., Day, S. D., Owen, J. S., Stewart, R. D., Steele, M. K., & Sridhar, V. (2018). Porous-permeable pavements promote growth and establishment and modify root depth distribution of Platanus × acerifolia (Aiton) willd. in simulated urban tree pits. Urban Forestry and Urban Greening, 33, 27-36. https://doi.org/10.1016/j.ufug.2018.05.003

  • Duffy, J. P., Cunliffe, A. M., DeBell, L., Sandbrook, C., Wich, S. A., Shutler, J. D., Myers-Smith, I. H., Varela, M. R., & Anderson, K. (2018). Location, location, location: considerations when using lightweight drones in challenging environments. Remote Sensing in Ecology and Conservation, 4(1), 7-19. https://doi.org/10.1002/rse2.58

  • Dunster, J. A., Smiley, E. T., Matheny, N., & Lilly, S. (2017). Tree Risk Assessment Manual (2nd ed.). International Society of Arboriculture.

  • Gashu, K., Gebre-Egziabher, T., & Wubneh, M. (2019). Local communities’ perceptions and use of urban green infrastructure in two Ethiopian cities: Bahir Dar and Hawassa. Journal of Environmental Planning and Management, 63(2), 287-316. https://doi.org/10.1080/09640568.2019.1578643

  • Guo, M., Tan, Y., Wang, L., & Hou, Y. (2018). A state-of-the-art review on interfacial behavior between asphalt binder and mineral aggregate. In Frontiers of Structural and Civil Engineering (Vol. 12, Issue 2, pp. 248-259). Springer. https://doi.org/10.1007/s11709-017-0422-x

  • Gupta, K., Kumar, P., Pathan, S. K., & Sharma, K. P. (2012). Urban neighborhood green index – A measure of green spaces in urban areas. Landscape and Urban Planning, 105(3), 325-335. https://doi.org/10.1016/j.landurbplan.2012.01.003

  • Hasan, R., Othman, N., & Ismail, F. (2018). Developing Malaysian roadside tree species selection model in urban areas. Planning Malaysia Journal, 16(3), 248-260. https://doi.org/10.21837/pm.v16i7.515

  • Hauer, R. J., & Peterson, W. D. (2016). Municipal tree care and management in the United States: A 2014 urban & community forestry census of tree activities. Special Publication, 16(1), 1-71.

  • Hestir, E. L., Khanna, S., Andrew, M. E., Santos, M. J., Viers, J. H., Greenberg, J. A., Rajapakse, S. S., & Ustin, S. L. (2008). Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem. Remote Sensing of Environment, 112(11), 4034-4047. https://doi.org/10.1016/J.RSE.2008.01.022

  • Kaewkhow, S., & Srivanit, M. (2020). Aggregation of Thai arborist judgments on urban tree hazard inventories used to determine tree health at single-tree level. IOP Conference Series: Materials Science and Engineering, 910, Article 012023. https://doi.org/10.1088/1757-899X/910/1/012023

  • Kanniah, K. D. (2017). Quantifying green cover change for sustainable urban planning: A case of Kuala Lumpur, Malaysia. Urban Forestry & Urban Greening, 27, 287-304. https://doi.org/10.1016/J.UFUG.2017.08.016

  • Klein, R. W., Koeser, A. K., Hauer, R. J., Hansen, G., & Escobedo, F. J. (2019). Risk assessment and risk perception of trees: A review of literature relating to arboriculture and urban forestry. Arboriculture and Urban Forestry, 45(1), 26-38. https://doi.org/10.48044/JAUF.2019.003

  • Lachowycz, K., & Jones, A. P. (2011). Greenspace and obesity: A systematic review of the evidence. Obesity Reviews, 12(5), e183-e189. https://doi.org/10.1111/J.1467-789X.2010.00827.X

  • Listyarini, S., Warlina, L., Indrawati, E., & Pardede, T. (2014). Optimization model for predicting green areas in Jakarta to minimize impacts of climate change. WIT Transactions on Ecology and the Environment, 191, 305-315. https://doi.org/10.2495/SC140261

  • Lyytimäki, J., & Sipilä, M. (2009). Hopping on one leg – The challenge of ecosystem disservices for urban green management. Urban Forestry & Urban Greening, 8(4), 309-315. https://doi.org/10.1016/J.UFUG.2009.09.003

  • Milligan, C., & Bingley, A. (2007). Restorative places or scary spaces? The impact of woodland on the mental well-being of young adults. Health & Place, 13(4), 799-811. https://doi.org/10.1016/J.HEALTHPLACE.2007.01.005

  • Mitchell, R., & Popham, F. (2007). Greenspace, urbanity and health: Relationships in England. Journal of Epidemiology & Community Health, 61(8), 681-683. https://doi.org/10.1136/JECH.2006.053553

  • Mullaney, J. (2015). Using Permeable Pavements to Promote Street Tree Growth. [Doctoral dissertation]. University of the Sunshine Coast, Queensland. https://doi.org/10.25907/00454

  • Mullaney, J., Lucke, T., & Trueman, S. J. (2015). The effect of permeable pavements with an underlying base layer on the growth and nutrient status of urban trees. Urban Forestry & Urban Greening, 14(1), 19-29. https://doi.org/10.1016/j.ufug.2014.11.007

  • Rahman, M. A., Moser, A., Rötzer, T., & Pauleit, S. (2017). Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agricultural and Forest Meteorology, 232, 443-456. https://doi.org/10.1016/j.agrformet.2016.10.006

  • Rahman, M. A., Smith, J. G., Stringer, P., & Ennos, A. R. (2011). Effect of rooting conditions on the growth and cooling ability of Pyrus calleryana. Urban Forestry and Urban Greening, 10(3), 185-192. https://doi.org/10.1016/j.ufug.2011.05.003

  • Rahman, M. A., Stringer, P., & Ennos, A. R. (2013). Effect of pit design and soil composition on performance of Pyrus calleryana street trees in the establishment period. Arboriculture and Urban Forestry, 39(6), 256-266.

  • Rahman, M., Haque, S., & Rahman, Z. (2020). Identifying and categorizing opinions expressed in Bangla sentences using deep learning technique. International Journal of Computer Applications, 176(17), 13-17. https://doi.org/10.5120/ijca2020920119

  • Rotherham, I. D. (2020). Routledge handbook of urban forestry. Arboricultural Journal, 42(3), 180-183. https://doi.org/10.1080/03071375.2020.1738787

  • Schmidlin, T. W. (2009). Human fatalities from wind-related tree failures in the United States, 1995-2007. Natural Hazards, 50(1), 13-25. https://doi.org/10.1007/s11069-008-9314-7

  • Schneider, A., Friedl, M. A., & Potere, D. (2010). Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions.’ Remote Sensing of Environment, 114(8), 1733-1746. https://doi.org/10.1016/J.RSE.2010.03.003

  • Seifert, E., Seifert, S., Vogt, H., Drew, D., van Aardt, J., Kunneke, A., & Seifert, T. (2019). Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sensing, 11(10), Article 1252. https://doi.org/10.3390/rs11101252

  • Semeraro, T., Scarano, A., Buccolieri, R., Santino, A., & Aarrevaara, E. (2021). Planning of urban green spaces: An ecological perspective on human benefits. Land, 10(2), Article 105. https://doi.org/10.3390/land10020105

  • Seng, H. W., Ratnam, W., Noor, S. M., & Clyde, M. M. (2004). The effects of the timing and method of logging on forest structure in Peninsular Malaysia. Forest Ecology and Management, 203(1-3), 209-228. https://doi.org/10.1016/J.FORECO.2004.07.050

  • Song, Y., Li, F., Wang, X., Xu, C., Zhang, J., Liu, X., & Zhang, H. (2015). The effects of urban impervious surfaces on eco-physiological characteristics of Ginkgo biloba: A case study from Beijing, China. Urban Forestry and Urban Greening, 14(4), 1102-1109. https://doi.org/10.1016/j.ufug.2015.10.008

  • Staples, G. W., & Elevitch, C. R. (2006). Samanea saman (rain tree). In C. R. Elevitch (Ed.), Species Profiles for Pacific Island Agroforestry (pp. 1-14). Permanent Agriculture Resources (PAR).

  • Stathers, T. E., Rees, D., Kabi, S., Mbilinyi, L., Smit, N., Kiozya, H., Jeremiah, S., Nyango, A., & Jeffries, D. (2003). Sweetpotato infestation by Cylas spp. in East Africa: I. Cultivar differences in field infestation and the role of plant factors. International Journal of Pest Management, 49(2), 131-140. https://doi.org/10.1080/0967087021000043085

  • Vaz, A. S., Kueffer, C., Kull, C. A., Richardson, D. M., Vicente, J. R., Kühn, I., Schröter, M., Hauck, J., Bonn, A., & Honrado, J. P. (2017). Integrating ecosystem services and disservices: Insights from plant invasions. Ecosystem Services, 23, 94-107. https://doi.org/10.1016/j.ecoser.2016.11.017

  • Vogt, J., Hauer, R. J., & Fischer, B. C. (2015). The costs of maintaining and not maintaining the urban forest: A review of the urban forestry and arboriculture literature. Arboriculture and Urban Forestry, 41(6), 293-323.

  • Wang, J., Rich, P. M., & Price, K. P. (2003). Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. International Journal of Remote Sensing, 24(11), 2345-2364. https://doi.org/10.1080/01431160210154812

  • Wang, X. M., Wang, X. K., Su, Y. B., & Zhang, H. X. (2019). Land pavement depresses photosynthesis in urban trees especially under drought stress. Science of the Total Environment, 653, 120-130. https://doi.org/10.1016/j.scitotenv.2018.10.281

  • Wang, X., Wang, X., Sun, X., Berlyn, G. P., & Rehim, A. (2020). Effect of pavement and water deficit on biomass allocation and whole-tree transpiration in two contrasting urban tree species. Urban Ecosystems, 23(4), 893-904. https://doi.org/10.1007/s11252-020-00953-z

  • Weier, J., & Herring, D. (2000). Measuring Vegetation (NDVI & EVI). Earth Observatory. National Aeronautics and Space Administration.

  • Xiao, Q., & McPherson, E. G. (2005). Tree health mapping with multispectral remote sensing data at UC Davis, California. Urban Ecosystems, 8(3-4), 349-361. https://doi.org/10.1007/s11252-005-4867-7

  • Yang, C., He, X., Wang, R., Yan, F., Yu, L., Bu, K., Yang, J., Chang, L., & Zhang, S. (2017). The effect of urban green spaces on the urban thermal environment and its seasonal variations. Forests, 8(5), Article 153. https://doi.org/10.3390/F8050153