e-ISSN 2231-8542
ISSN 1511-3701
Muhamad Haikal Zainal, Khairul Baqir Alkhair Khairul Amin, Oskar Hasdinor Hassan, Sharifah Aminah Syed Mohamad, Abd Malik Marwan Ali, Fathiah Abdullah and Muhd Zu Azhan Yahya
Pertanika Journal of Tropical Agricultural Science, Volume 25, Issue S, March 2017
Keywords: Algae biomass, energy storage and conversion, freeze dry, Microbial Fuel Cell, spray dry
Published on: 05 Dec 2017
Many kinds of substrates have been used to investigate bioelectricity production with Microbial Fuel Cell (MFC). Dry algae biomass has the highest maximum power density compared to other substrates due to high carbon sources from its lipid. However, the bacterial digestion of algae biomass is not simple because of the complexity and strength of the algal cell wall structure. An algae biomass extraction is needed to break the cell wall structure and facilitate digestion. Spray drying method is commonly used in high-value products but may degrade some algal components which are crucial for microbial degradation in MFC, while the freeze-drying method is able to preserve algal cell constituents. The MFC was fed with freeze dried and spray dried algae biomass to produce energy and determine the degradation efficiency. Results showed the average voltage generated was 739 mV and 740 mV from freeze dried and spray dried algae biomass, respectively. The maximum power density of freeze dried algae biomass is 159.9 mW/m² and spray dried algae biomass is 152.3 mW/m². Freeze dried algae biomass has 54.2% of COD removal and 28.4% of Coulombic Efficiency while spray dried algae biomass has 50.1% of COD removal and 24.9% of Coulombic Efficiency.
ISSN 1511-3701
e-ISSN 2231-8542