PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 45 (1) Feb. 2022 / JTAS-2285-2021

 

Rumen Volatile Fatty Acids and Morphology of the Rumen Mucosa of Swamp Buffalo Raised under Semi-Intensive and Extensive System in Tropical Environment

Fhaisol Mat Amin, Amirul Faiz Mohd Azmi, Lokman Hakim Idris, Hasliza Abu Hassim, Mohd Zamri Saad and Md Zuki Abu Bakar

Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 1, February 2022

DOI: https://doi.org/10.47836/pjtas.45.1.01

Keywords: Morphology, production system, rumen mucosa, swamp buffalo, volatile fatty acids

Published on: 10 Febuary 2022

Swamp buffaloes are mostly raised under an extensive system because they can adapt to the harsh environment. However, exploring the rumen mucosa (RM) morphology and volatile fatty acids (VFA) of swamp buffalo associated with different production systems is still lacking. This study evaluated the rumen VFA and morphology of RM between two groups of buffalo raised under semi-intensive (SI) and an extensive system (EX). VFA was analysed using gas chromatography. The morphology of rumen mucosa was evaluated macro and microscopically for papillae length and width, surface area, density, and muscle thickness, and the microscopic evaluation for stratified squamous epithelium (SSE) and keratin thickness. SI has a greater VFA concentration than the EX. The SSE layer on the dorsal region of the rumen was thicker in the EX group than in the SI group (p≤0.05). Within the group, the SSE of the dorsal region of rumen was thicker than the ventral region (p≤0.05) in the EX group. However, the ventral region of the rumen was thicker than the dorsal region in the SI group. The thickness of the keratin layer in the EX group was significantly thicker than the SI group (p≤0.05) only on the dorsal region. In conclusion, swamp buffalo from the SI production system has a greater concentration of volatile fatty acid than the EX-group contributed by feeding management under a semi-intensive system. Nevertheless, the advantage in VFA concentration alone is not sufficient to conclude semi-intensive production system exerts a favourable effect on the morphology of the rumen mucosa.

  • Almeida, M. T. C., Ezequiel, J. M. B., Paschoaloto, J. R., Perez, H. L., Carvalho, V. B., Castro Filho, E. S., & van Cleef, E. H. C. B. (2018). Rumen and liver measurements of lambs fed with high inclusions of crude glycerin in adaptation and finishing period of feedlot. Small Ruminant Research, 167, 1–5. https://doi.org/10.1016/j.smallrumres.2018.08.001

  • Aluwong, T., Kobo, P. I., & Abdullahi, A. (2013). Volatile fatty acids production in ruminants and the role of monocarboxylate transporters: A review. African Journal of Biotechnology, 9(38), 6229–6232. https://doi.org/10.4314/ajb.v9i38

  • Álvarez-Rodríguez, J., Monleón, E., Sanz, A., Badiola, J. J., & Joy, M. (2012). Rumen fermentation and histology in light lambs as affected by forage supply and lactation length. Research in Veterinary Science, 92(2), 247–253. https://doi.org/10.1016/j.rvsc.2011.03.010

  • Andrew, J., & John, G. (1998). How season of grazing and herbivore selectivity influence monsoon tall-grass communities of northern Australia. Journal of Vegetation Science, 9, 123–132.

  • Bach, A., Calsamiglia, S., & Stern, M. D. (2005). Nitrogen metabolism in the rumen. Journal of Dairy Science, 88(S), E9–E21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7

  • Baldwin, R. L. (1999). Sheep gastrointestinal development in response to different dietary treatments. Small Ruminant Research, 35(1), 39–47. https://doi.org/10.1016/S0921-4488(99)00062-0

  • Balthrop, J., Brand, B., Cowie, R., Danier, J., Boever, J. D., Jonge, L. D., Jackson, F. S., Makkar, H., & Piotrowski, C. (2011). Quality assurance for animal feed analysis laboratories. Food and Agriculture Organization.

  • Barros, S. S., da Cruz, R. S., de Melo Junior, L. M., de Souza, D. P. M., Moron, S. E., Alexandrino, E., Missio, R. L., Neiva, J. N. M., Restle, J., Maruo, V. M., Sousa, L. F., & Ramos, A. T. (2015). Queratinização das papilas ruminais, glicogênio celular e composição química da carne de tourinhos alimentados com níveis de concentrado e farelo do mesocarpo do babaçu [Rumen papillae keratinization, cell glycogen and chemical composition of the meat from young bulls fed different levels of concentrate and babassu mesocarp bran]. Semina: Ciências Agrárias, 36(3), 1671–1683. https://doi.org/10.5433/1679-0359.2015v36n3p1671

  • Beharka, A A, Nagaraja, T. G., Morrill, J. L., Kennedy, G. A, & Klemm, R. D. (1998). Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal calves. Journal of Dairy Science, 81(7), 1946–1955. https://doi.org/10.3168/jds.S0022-0302(98)75768-6

  • Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 70(2), 567–590. https://doi.org/10.1046/j.1461-0248.2001.00230.x

  • Bernabucci, U., Lacetera, N., Baumgard, L. H., Rhoads, R. P., Ronchi, B., & Nardone, A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 4(7), 1167–1183. https://doi.org/10.1017/S175173111000090X

  • Boniface, A. N., Murray, R. M., & Muller, D. (1992). Intake and digestion in swamp buffaloes and cattle. 2. The comparative response to urea supplements in animals fed tropical grasses. The Journal of Agricultural Science, 119(2), 243–254. https://doi.org/10.1017/S0021859600014179

  • Candyrine, S. C. L., Jahromi, M. F., Ebrahimi, M., Chen, W. L., Rezaei, S., Goh, Y. M., Abdullah, N., & Liang, J. B. (2019). Oil supplementation improved growth and diet digestibility in goats and sheep fed fattening diet. Asian-Australasian Journal of Animal Sciences, 32(4), 533–540. https://doi.org/10.5713/ajas.18.0059

  • Celi, P., Cowieson, A. J., Fru-nji, F., Steinert, R. E., Kluenter, A., & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88–100. https://doi.org/10.1016/j.anifeedsci.2017.09.012

  • Chanthakhoun, V., Wanapat, M., Kongmun, P., & Cherdthong, A. (2012). Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Livestock Science, 143(2-3), 172–176. https://doi.org/10.1016/j.livsci.2011.09.009

  • Clauss, M., Hofmann, R. R., Fickel, J., Streich, W. J., & Hummel, J. (2009). The intraruminal papillation gradient in wild ruminants of different feeding types: Implications for rumen physiology. Journal of Morphology, 270(8), 929–942. https://doi.org/10.1002/jmor.10729

  • Consalvo, S., Mirabella, N., Pero, M. E., Grazioli, R., & Calabrò, S. (2016). Weaning techniques for buffalo calves: Pre-stomachs development and functionality. Journal of Nutritional Ecology and Food Research, 3(2), 116–124. https://doi.org/doi:10.1166/jnef.2016.1134

  • Cui, K., Qi, M., Wang, S., Diao, Q., & Zhang, N. (2019). Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs. Scientific Reports, 9, 16612. https://doi.org/10.1038/s41598-019-53279-y

  • de Resende-Junior, J. C., Alonso, L. D. S., Pereira, M. N., Roca, M. M. G., Duboc, M. V., de Oliveira, E. C., & de Melo, L. Q. (2006). Effect of the feeding pattern on rumen wall morphology of cows and sheep. Brazilian Journal of Veterinary Research and Animal Science, 43(4), 526–536. https://doi.org/10.11606/issn.1678-4456.bjvras.2006.26469

  • Diao, Q., Zhang, R., & Fu, T. (2019). Review of strategies to promote rumen development in calves. Animals, 9(8), 490. https://doi.org/10.3390/ani9080490

  • Dieho, K., Bannink, A., Geurts, I. A. L., Schonewille, J. T., Gort, G., & Dijkstra, J. (2016). Morphological adaptation of rumen papillae during the dry period and early lactation as affected by rate of increase of concentrate allowance. Journal of Dairy Science, 99(3), 2339–2352. https://doi.org/10.3168/jds.2015-9837

  • Ding, B. A., Ma, S. Q., Li, Z. R., Li, X. L., & Madigosky, S. R. (2018). Seasonal changes of rumen and intestine morphology of the Qinghai yak (Bos grunniens). Veterinary world, 11(8), 1135–1138. https://doi.org/10.14202/vetworld.2018.1135-1138

  • Duarte, E. R., Abrão, F. O., Ribeiro, I. C. O., Vieira, E. A., Nigri, A. C., Silva, K. L., Júnior, G. F. V., Barreto, S. M. P., & Geraseev, L. C. (2018). Rumen protozoa of different ages of beef cattle raised in tropical pastures during the dry season. Journal of Applied Animal Research, 46(1), 1457–1461. https://doi.org/10.1080/09712119.2018.1530676

  • Ebrahimi, M., Rajion, M. A., Adeyemi, K. D., Jafari, S., Jahromi, F., Oskoueian, E., Goh, Y. M., & Ghaffari, M. H. (2017). Dietary n-6: n-3 fatty acid ratios alter rumen fermentation parameters and microbial populations in goats. Journal of Agricultural and Food Chemistry, 65(4), 737–744. https://doi.org/10.1021/acs.jafc.6b04704

  • Escarcha, J. F., Lassa, J. A., Palacpac, E. P., & Zander, K. K. (2020). Livelihoods transformation and climate change adaptation: The case of smallholder water buffalo farmers in the Philippines. Environmental Development, 33, 100468. https://doi.org/10.1016/j.envdev.2019.100468

  • Ferreira, L. M. M., Hervás, G., Belenguer, A., Celaya, R., Rodrigues, M. A. M., García, U., Frutos, P., & Osoro, K. (2017). Comparison of feed intake, digestion and rumen function among domestic ruminant species grazing in upland vegetation communities. Journal of Animal Physiology and Animal Nutrition, 101(5), 846–856. https://doi.org/10.1111/jpn.12474

  • Franzolin, R., & Alves, T. C. (2010). The ruminal physiology in buffalo compared with cattle. Revista Veterinaria, 21(1), 104–111. https://doi.org/10.13140/2.1.1501.1522

  • Franzolin, R., Rosales, F. P., & Soares, W. V. B. (2010). Effects of dietary energy and nitrogen supplements on rumen fermentation and protozoa population in buffalo and zebu cattle. Revista Brasileira de Zootecnia, 39(3), 549–555. https://doi.org/10.1590/s1516-35982010000300014

  • Goularte, S. R., Ítavo, L. C. V., Santos, G. T., Ítavo, C. C. B. F., Oliveira, L. C. S., Favaro, S. P., Dias, A. M., Torres Junior, R. A. A., & Bittar, C. M. M. (2011). Ácidos graxos voláteis no rúmen de vacas alimentadas com diferentes teores de concentrado na dieta [Volatile fatty acids in rumen cows fed with different levels of concentrate in diet]. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 63(6), 1479–1486. https://doi.org/10.1590/S0102-09352011000600027

  • Greenwood, R. H., Morrill, J. L., Titgemeyer, E. C., & Kennedy, G. A. (1997). A new method of measuring diet abrasion and its effect on the development of the forestomach. Journal of Dairy Science, 80(10), 2534–2541. https://doi.org/10.3168/jds.S0022-0302(97)76207-6

  • Gupta, M., Khan, N., Rastogi, A., Haq, Z. U., & Varun, T. K. (2016). Nutritional drivers of rumen development: A review. Agricultural Reviews, 37(2), 148-153. https://doi.org/10.18805/ar.v37i2.10740

  • Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Janssen, P. H., Abecia, L., Angarita, E., Aravena, P., Arenas, G. N., Ariza, C., Attwood, G. T., Avila, J. M., Avila-Stagno, J., Bannink, A., Barahona, R., Batistotti, M., Bertelsen, M. F., Brown-Kav, A., & Zunino, P. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 5, 14567. https://doi.org/10.1038/srep14567

  • Kay, R. N. B., Engelhardt, W. V., & White, R. G. (1980). The digestive physiology of wild ruminants. In Y. Ruckebusch & P. Thivend (Eds.), Digestive physiology and metabolism in ruminants (pp. 743-761). Springer. https://doi.org/10.1007/978-94-011-8067-2_36

  • Kern, R. J., Lindholm-Perry, A. K., Freetly, H. C., Kuehn, L. A., Rule, D. C., & Ludden, P. A. (2016). Rumen papillae morphology of beef steers relative to gain and feed intake and the association of volatile fatty acids with kallikrein gene expression. Livestock Science, 187, 24–30. https://doi.org/10.1016/j.livsci.2016.02.007

  • Khorasani, G. R., Okine, E. K., & Kennelly, J. J. (2001). Effects of forage source and amount of concentrate on rumen and intestinal digestion of nutrients in late-lactation cows. Journal of Dairy Science, 84(5), 1156–1165. https://doi.org/10.3168/jds.S0022-0302(01)74576-6

  • Kotresh Prasad, C., Abraham, J., Panchbhai, G., Barman, D., Nag, P., & Ajithakumar, H. M. (2019). Growth performance and rumen development in Malabari kids reared under different production systems. Tropical Animal Health and Production, 51(1), 119–129. https://doi.org/10.1007/s11250-018-1666-8

  • Kristensen, N. B. (2005). Splanchnic metabolism of volatile fatty acids in the dairy cow. Animal Science, 80(1), 3–10. https://doi.org/10.1079/asc41250003

  • Lam, S., Munro, J. C., Zhou, M., Guan, L. L., Schenkel, F. S., Steele, M. A., Miller, S. P., & Montanholi, Y. R. (2018). Associations of rumen parameters with feed efficiency and sampling routine in beef cattle. Animal, 12(7), 1442–1450. https://doi.org/10.1017/S1751731117002750

  • Lin, M. F., Ang, S. L., Yangb, C. W., Hsua, J. T., & Wang, H. T. (2011). Study on the characteristics of gastrointestinal tract and rumen ecology of Formosan Reeves’. Journal of Applied Animal Research, 39(2), 142–146. https://doi.org/10.1080/09712119.2011.565560

  • Liu, L., Sun, D., Mao, S., Zhu, W., & Liu, J. (2019). Infusion of sodium butyrate promotes rumen papillae growth and enhances expression of genes related to rumen epithelial VFA uptake and metabolism in neonatal twin lambs. Journal of Animal Science, 97(2), 909–921. https://doi.org/https://doi.org/10.1093/jas/sky459

  • Ma, S. C., & Zhao, G. Y. (2010). Effects of acetic, propionic and butyric acids given intraruminally at different molar proportions or individually on rumen papillae growth and IGF-I and IGFBP-3 in plasma, liver and rumen tissue in growing sheep nourished by total intragastric infusions. African Journal of Biotechnology, 9(16), 2468–2473. https://doi.org/10.4314/ajb.v9i16

  • Malaysian Meteorological Department. (2018) Laporan tahunan [Annual report]. https://www.met.gov.my/content/pdf/penerbitan/laporantahunan/laporantahunan2018.pdf

  • Mao, S., Zhang, R., Wang, D., & Zhu, W. (2012). The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Veterinary Research, 8, 237. https://doi.org/10.1186/1746-6148-8-237

  • Marshal, J. P., Krausman, P. R., & Bleich, V. C. (2005). Rainfall, temperature, and forage dynamics affect nutritional quality of desert mule deer forage. Rangeland Ecology and Management, 58(4), 360–365. https://doi.org/https://doi.org/10.2111/1551-5028(2005)058[0360:RTAFDA]2.0.CO;2

  • Mason, F., Fotschki, B., Di Rosso, A., & Korzekwa, A. (2019). Influence of farming conditions on the rumen of red deer (Cervus elaphus). Animals, 9(9), 601. https://doi.org/10.3390/ani9090601

  • Masud, M. M., Rahman, M. S., Al-Amin, A. Q., Kari, F., & Filho, W. L. (2014). Impact of climate change: An empirical investigation of Malaysian rice production. Mitigation and Adaptation Strategies for Global Change, 19(4), 431–444. https://doi.org/10.1007/s11027-012-9441-z

  • McGrath, J., Duval, S. M., Tamassia, L. F. M., Kindermann, M., Stemmler, R. T., de Gouvea, V. N., Acedo, T. S., Immig, I., Williams, S. N., & Celi, P. (2018). Nutritional strategies in ruminants: A lifetime approach. Research in Veterinary Science, 116, 28–39. https://doi.org/10.1016/j.rvsc.2017.09.011

  • Melo, L. Q., Costa, S. F., Lopes, F., Guerreiro, M. C., Armentano, L. E., & Pereira, M. N. (2013). Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption. Journal of Animal Science, 91(4), 1775–1783. https://doi.org/10.2527/jas.2011-4999

  • Mohd Azmi, A. F., Abu Hassim, H., Mohd Nor, N., Ahmad, H., Goh, Y. M., Abdullah, P., Abu Bakar, M. Z., Vera, J., Mohd Deli, N. S., Salleh, A., & Zamri-Saad, M. (2021). Comparative growth and economic performances between indigenous swamp and murrah crossbred buffaloes in Malaysia. Animals, 11(4), 957. https://doi.org/10.3390/ani11040957

  • Moore, K. J., & Jung, H. J. G. (2001). Lignin and fiber digestion. Journal of Range Management, 54(4), 420–430. https://doi.org/10.2307/4003113

  • Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security, 14, 1–8. https://doi.org/10.1016/j.gfs.2017.01.001

  • Moyer, J. R., & Hironaka, R. (1993). Digestible energy and protein content of some annual weeds, alfalfa, bromegrass, and tame oats. Canadian Journal of Plant Science, 73(4), 1305–1308. https://doi.org/10.4141/cjps93-169

  • Nurliani, A., Budipitojo, T., & Kusindarta, D. L. (2015). Morphological characteristics of the stomach of the swamp buffalo (Bubalus bubalis). Aceh International Journal of Science and Technology, 4(3), 78–82. https://doi.org/10.13170/aijst.4.3.3011

  • Palmieri, A. D., Oliveira, R. L., Ribeiro, C. V. D. M., Ribeiro, M. D., Ribeiro, R. D. X., Leão, A. G., Agy, M. S. F. A., & Ribeiro, O. L. (2012). Effects of substituting soybean meal for sunflower cake in the diet on the growth and carcass traits of crossbred Boer goat kids. Asian-Australasian Journal of Animal Sciences, 25(1), 59-65. https://doi.org/10.5713/ajas.2011.11140

  • Parmar, N. R., Solanki, J. V., Patel, A. B., Shah, T. M., Patel, A. K., Parnerkar, S., Kumar, J. I., N., & Joshi, C. G. (2014). Metagenome of Mehsani buffalo rumen microbiota: An assessment of variation in feed-dependent phylogenetic and functional classification. Journal of Molecular Microbiology and Biotechnology, 24(4), 249–261. https://doi.org/10.1159/000365054

  • Penner, G. B., Taniguchi, M., Guan, L. L., Beauchemin, K. A., & Oba, M. (2009). Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. Journal of Dairy Science, 92(6), 2767–2781. https://doi.org/10.3168/jds.2008-1716

  • Rostini, T., Zakir, I., & Biyatmoko, D. (2018). Different in quantity of microbial rumen fluid of river buffalo and swamp buffalo. In Proceedings of the International Conference on Applied Science and Engineering (Vol. 175, pp. 118–119). Atlantis Press. https://doi.org/https://doi.org/10.2991/icase-18.2018.32

  • Savsani, H. H., Murthy, K. S., Gajbhiye, P. U., Vataliya, P. H., Dutta, K. S., Gadariya, M. R., & Bhadaniya, A. R. (2017). Economics of rumen bypass fat feeding on cost of milk production, feeding and realizable receipts in lactating Jaffrabadi buffaloes. Buffalo Bulletin, 36(1), 193–198.

  • Saw, H. Y., Janaun, J. S., Kumaresan, S., & Chu, C. M. (2012). Characterization of the physical properties of palm kernel cake. International Journal of Food Properties, 15(3), 536–548. https://doi.org/10.1080/10942912.2010.492543

  • Shen, Z., Kuhla, S., Zitnan, R., Seyfert, H. M., Schneider, F., Hagemeister, H., Chudy, A., Löhrke, B., Blum, J. W., Hammon, H. M., & Voigt, J. (2005). Intraruminal infusion of n-butyric acid induces an increase of ruminal papillae size independent of IGF-1 system in castrated bulls. Archives of Animal Nutrition, 59(4), 213–225. https://doi.org/10.1080/17450390500216894

  • Silanikove, N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 67(1–2), 1–18. https://doi.org/10.1016/S0301-6226(00)00162-7

  • Steele, M. A., Croom, J., Kahler, M., AlZahal, O., Hook, S. E., Plaizier, K., & McBride, B. W. (2011). Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300(6), R1515–R1523. https://doi.org/10.1152/ajpregu.00120.2010

  • Storm, A. C., Kristensen, N. B., & Hanigan, M. D. (2012). A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows. Journal of Dairy Science, 95(6), 2919–2934. https://doi.org/10.3168/jds.2011-4239

  • Suárez, B. J., Van Reenen, C. G., Stockhofe, N., Dijkstra, J., & Gerrits, W. J. J. (2007). Effect of roughage source and roughage to concentrate ratio on animal performance and rumen development in veal calves. Journal of Dairy Science, 90(5), 2390–2403. https://doi.org/10.3168/jds.2006-524

  • Suarez-Mena, F. X., Heinrichs, A. J., Jones, C. M., Hill, T. M., & Quigley, J. D. (2016). Straw particle size in calf starters: Effects on digestive system development and rumen fermentation. Journal of Dairy Science, 99(1), 341–353. https://doi.org/10.3168/jds.2015-9884

  • Suhaimi, A., Bustami, Y., & Saihani, A. (2019). Assessment of comparative advantage and development strategy for swamp buffalo livestock in Hulu Sungai Utara regency, South Kalimantan. Asian Journal of Scientific Research, 12(2), 271–278. https://doi.org/10.3923/ajsr.2019.271.278

  • Suphachavalit, S., Sricharoen, P., Luesopha, T., Srisakdi, T., Na-Chiangmai, A., & Boonprong, S. (2013). Swamp buffalo production system and needs for extension on local scale farmers in the lower northeast of Thailand. Buffalo Bulletin, 32, 1204–1207.

  • Sutton, J. D., Dhanoa, M. S., Morant, S. V, France, J., Napper, D. J., & Schuller, E. (2003). Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets. Journal of Dairy Science, 86(11), 3620–3633. https://doi.org/10.3168/jds.S0022-0302(03)73968-X

  • Temple, D., & Manteca, X. (2020). Animal welfare in extensive production systems is still an area of concern. Frontiers in Sustainable Food Systems, 4, 154–172. https://doi.org/10.3389/fsufs.2020.545902

  • Van Kessel, J. A. S., & Russell, J. B. (1996). The effect of pH on ruminal methanogenesis. FEMS Microbiology Ecology, 20(4), 205–210. https://doi.org/10.1016/0168-6496(96)00030-X

  • Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

  • Wanapat, M., & Pimpa, O. (1999). Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Australasian Journal of Animal Sciences, 12(6), 904–907. https://doi.org/10.5713/ajas.1999.904

  • Wanapat, M., Kang, S., & Polyorach, S. (2013). Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. Journal of Animal Science and Biotechnology, 4, 32. https://doi.org/10.1186/2049-1891-4-32

  • Wanapat, M., Pilajun, R., & Kongmun, P. (2009). Ruminal ecology of swamp buffalo as influenced by dietary sources. Animal Feed Science and Technology, 151(3–4), 205–214. https://doi.org/10.1016/j.anifeedsci.2009.01.017

  • Wang, L., Zhang, G., Li, Y., & Zhang, Y. (2020). Effects of high forage / concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals, 10(2), 223–235. https://doi.org/https://doi.org/10.3390/ani10020223

  • Wang, L., Zhou, Q., & Zheng, G. H. (2006). Comprehensive analysis of the factors for propionic acid accumulation in acidogenic phase of anaerobic process. Environmental Technology, 27(3), 269–276. https://doi.org/10.1080/09593332708618640

  • Wang, Y. H., Xu, M., Wang, F. N., Yu, Z. P., Yao, J. H., Zan, L. S., & Yang, F. X. (2009). Effect of dietary starch on rumen and small intestine morphology and digesta pH in goats. Livestock Science, 122(1), 48–52. https://doi.org/10.1016/j.livsci.2008.07.024

  • Wanna, M., Pisai, W., & Sorachai, K. (2012). Production efficiency of swamp buffaloes and Mehsana river buffalo. Buffalo Bulletin, 31(1), 40–45.

  • Xu, M., Dong, Y., Du, S., Hao, Y. S., Wang, Y. H., Wang, F. N., & Yao, J. H. (2009). Effect of corn particle size on mucosal morphology and digesta pH of the gastrointestinal tract in growing goats. Livestock Science, 123(1), 34–37. https://doi.org/10.1016/j.livsci.2008.10.00

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2285-2021

Download Full Article PDF

Share this article

Recent Articles