e-ISSN 2231-8542
ISSN 1511-3701
Fhaisol Mat Amin, Amirul Faiz Mohd Azmi, Lokman Hakim Idris, Hasliza Abu Hassim, Mohd Zamri Saad and Md Zuki Abu Bakar
Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 1, February 2022
DOI: https://doi.org/10.47836/pjtas.45.1.01
Keywords: Morphology, production system, rumen mucosa, swamp buffalo, volatile fatty acids
Published on: 10 Febuary 2022
Swamp buffaloes are mostly raised under an extensive system because they can adapt to the harsh environment. However, exploring the rumen mucosa (RM) morphology and volatile fatty acids (VFA) of swamp buffalo associated with different production systems is still lacking. This study evaluated the rumen VFA and morphology of RM between two groups of buffalo raised under semi-intensive (SI) and an extensive system (EX). VFA was analysed using gas chromatography. The morphology of rumen mucosa was evaluated macro and microscopically for papillae length and width, surface area, density, and muscle thickness, and the microscopic evaluation for stratified squamous epithelium (SSE) and keratin thickness. SI has a greater VFA concentration than the EX. The SSE layer on the dorsal region of the rumen was thicker in the EX group than in the SI group (p≤0.05). Within the group, the SSE of the dorsal region of rumen was thicker than the ventral region (p≤0.05) in the EX group. However, the ventral region of the rumen was thicker than the dorsal region in the SI group. The thickness of the keratin layer in the EX group was significantly thicker than the SI group (p≤0.05) only on the dorsal region. In conclusion, swamp buffalo from the SI production system has a greater concentration of volatile fatty acid than the EX-group contributed by feeding management under a semi-intensive system. Nevertheless, the advantage in VFA concentration alone is not sufficient to conclude semi-intensive production system exerts a favourable effect on the morphology of the rumen mucosa.
Almeida, M. T. C., Ezequiel, J. M. B., Paschoaloto, J. R., Perez, H. L., Carvalho, V. B., Castro Filho, E. S., & van Cleef, E. H. C. B. (2018). Rumen and liver measurements of lambs fed with high inclusions of crude glycerin in adaptation and finishing period of feedlot. Small Ruminant Research, 167, 1–5. https://doi.org/10.1016/j.smallrumres.2018.08.001
Aluwong, T., Kobo, P. I., & Abdullahi, A. (2013). Volatile fatty acids production in ruminants and the role of monocarboxylate transporters: A review. African Journal of Biotechnology, 9(38), 6229–6232. https://doi.org/10.4314/ajb.v9i38
Álvarez-Rodríguez, J., Monleón, E., Sanz, A., Badiola, J. J., & Joy, M. (2012). Rumen fermentation and histology in light lambs as affected by forage supply and lactation length. Research in Veterinary Science, 92(2), 247–253. https://doi.org/10.1016/j.rvsc.2011.03.010
Andrew, J., & John, G. (1998). How season of grazing and herbivore selectivity influence monsoon tall-grass communities of northern Australia. Journal of Vegetation Science, 9, 123–132.
Bach, A., Calsamiglia, S., & Stern, M. D. (2005). Nitrogen metabolism in the rumen. Journal of Dairy Science, 88(S), E9–E21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7
Baldwin, R. L. (1999). Sheep gastrointestinal development in response to different dietary treatments. Small Ruminant Research, 35(1), 39–47. https://doi.org/10.1016/S0921-4488(99)00062-0
Balthrop, J., Brand, B., Cowie, R., Danier, J., Boever, J. D., Jonge, L. D., Jackson, F. S., Makkar, H., & Piotrowski, C. (2011). Quality assurance for animal feed analysis laboratories. Food and Agriculture Organization.
Barros, S. S., da Cruz, R. S., de Melo Junior, L. M., de Souza, D. P. M., Moron, S. E., Alexandrino, E., Missio, R. L., Neiva, J. N. M., Restle, J., Maruo, V. M., Sousa, L. F., & Ramos, A. T. (2015). Queratinização das papilas ruminais, glicogênio celular e composição química da carne de tourinhos alimentados com níveis de concentrado e farelo do mesocarpo do babaçu [Rumen papillae keratinization, cell glycogen and chemical composition of the meat from young bulls fed different levels of concentrate and babassu mesocarp bran]. Semina: Ciências Agrárias, 36(3), 1671–1683. https://doi.org/10.5433/1679-0359.2015v36n3p1671
Beharka, A A, Nagaraja, T. G., Morrill, J. L., Kennedy, G. A, & Klemm, R. D. (1998). Effects of form of the diet on anatomical, microbial, and fermentative development of the rumen of neonatal calves. Journal of Dairy Science, 81(7), 1946–1955. https://doi.org/10.3168/jds.S0022-0302(98)75768-6
Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews, 70(2), 567–590. https://doi.org/10.1046/j.1461-0248.2001.00230.x
Bernabucci, U., Lacetera, N., Baumgard, L. H., Rhoads, R. P., Ronchi, B., & Nardone, A. (2010). Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal, 4(7), 1167–1183. https://doi.org/10.1017/S175173111000090X
Boniface, A. N., Murray, R. M., & Muller, D. (1992). Intake and digestion in swamp buffaloes and cattle. 2. The comparative response to urea supplements in animals fed tropical grasses. The Journal of Agricultural Science, 119(2), 243–254. https://doi.org/10.1017/S0021859600014179
Candyrine, S. C. L., Jahromi, M. F., Ebrahimi, M., Chen, W. L., Rezaei, S., Goh, Y. M., Abdullah, N., & Liang, J. B. (2019). Oil supplementation improved growth and diet digestibility in goats and sheep fed fattening diet. Asian-Australasian Journal of Animal Sciences, 32(4), 533–540. https://doi.org/10.5713/ajas.18.0059
Celi, P., Cowieson, A. J., Fru-nji, F., Steinert, R. E., Kluenter, A., & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88–100. https://doi.org/10.1016/j.anifeedsci.2017.09.012
Chanthakhoun, V., Wanapat, M., Kongmun, P., & Cherdthong, A. (2012). Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Livestock Science, 143(2-3), 172–176. https://doi.org/10.1016/j.livsci.2011.09.009
Clauss, M., Hofmann, R. R., Fickel, J., Streich, W. J., & Hummel, J. (2009). The intraruminal papillation gradient in wild ruminants of different feeding types: Implications for rumen physiology. Journal of Morphology, 270(8), 929–942. https://doi.org/10.1002/jmor.10729
Consalvo, S., Mirabella, N., Pero, M. E., Grazioli, R., & Calabrò, S. (2016). Weaning techniques for buffalo calves: Pre-stomachs development and functionality. Journal of Nutritional Ecology and Food Research, 3(2), 116–124. https://doi.org/doi:10.1166/jnef.2016.1134
Cui, K., Qi, M., Wang, S., Diao, Q., & Zhang, N. (2019). Dietary energy and protein levels influenced the growth performance, ruminal morphology and fermentation and microbial diversity of lambs. Scientific Reports, 9, 16612. https://doi.org/10.1038/s41598-019-53279-y
de Resende-Junior, J. C., Alonso, L. D. S., Pereira, M. N., Roca, M. M. G., Duboc, M. V., de Oliveira, E. C., & de Melo, L. Q. (2006). Effect of the feeding pattern on rumen wall morphology of cows and sheep. Brazilian Journal of Veterinary Research and Animal Science, 43(4), 526–536. https://doi.org/10.11606/issn.1678-4456.bjvras.2006.26469
Diao, Q., Zhang, R., & Fu, T. (2019). Review of strategies to promote rumen development in calves. Animals, 9(8), 490. https://doi.org/10.3390/ani9080490
Dieho, K., Bannink, A., Geurts, I. A. L., Schonewille, J. T., Gort, G., & Dijkstra, J. (2016). Morphological adaptation of rumen papillae during the dry period and early lactation as affected by rate of increase of concentrate allowance. Journal of Dairy Science, 99(3), 2339–2352. https://doi.org/10.3168/jds.2015-9837
Ding, B. A., Ma, S. Q., Li, Z. R., Li, X. L., & Madigosky, S. R. (2018). Seasonal changes of rumen and intestine morphology of the Qinghai yak (Bos grunniens). Veterinary world, 11(8), 1135–1138. https://doi.org/10.14202/vetworld.2018.1135-1138
Duarte, E. R., Abrão, F. O., Ribeiro, I. C. O., Vieira, E. A., Nigri, A. C., Silva, K. L., Júnior, G. F. V., Barreto, S. M. P., & Geraseev, L. C. (2018). Rumen protozoa of different ages of beef cattle raised in tropical pastures during the dry season. Journal of Applied Animal Research, 46(1), 1457–1461. https://doi.org/10.1080/09712119.2018.1530676
Ebrahimi, M., Rajion, M. A., Adeyemi, K. D., Jafari, S., Jahromi, F., Oskoueian, E., Goh, Y. M., & Ghaffari, M. H. (2017). Dietary n-6: n-3 fatty acid ratios alter rumen fermentation parameters and microbial populations in goats. Journal of Agricultural and Food Chemistry, 65(4), 737–744. https://doi.org/10.1021/acs.jafc.6b04704
Escarcha, J. F., Lassa, J. A., Palacpac, E. P., & Zander, K. K. (2020). Livelihoods transformation and climate change adaptation: The case of smallholder water buffalo farmers in the Philippines. Environmental Development, 33, 100468. https://doi.org/10.1016/j.envdev.2019.100468
Ferreira, L. M. M., Hervás, G., Belenguer, A., Celaya, R., Rodrigues, M. A. M., García, U., Frutos, P., & Osoro, K. (2017). Comparison of feed intake, digestion and rumen function among domestic ruminant species grazing in upland vegetation communities. Journal of Animal Physiology and Animal Nutrition, 101(5), 846–856. https://doi.org/10.1111/jpn.12474
Franzolin, R., & Alves, T. C. (2010). The ruminal physiology in buffalo compared with cattle. Revista Veterinaria, 21(1), 104–111. https://doi.org/10.13140/2.1.1501.1522
Franzolin, R., Rosales, F. P., & Soares, W. V. B. (2010). Effects of dietary energy and nitrogen supplements on rumen fermentation and protozoa population in buffalo and zebu cattle. Revista Brasileira de Zootecnia, 39(3), 549–555. https://doi.org/10.1590/s1516-35982010000300014
Goularte, S. R., Ítavo, L. C. V., Santos, G. T., Ítavo, C. C. B. F., Oliveira, L. C. S., Favaro, S. P., Dias, A. M., Torres Junior, R. A. A., & Bittar, C. M. M. (2011). Ácidos graxos voláteis no rúmen de vacas alimentadas com diferentes teores de concentrado na dieta [Volatile fatty acids in rumen cows fed with different levels of concentrate in diet]. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 63(6), 1479–1486. https://doi.org/10.1590/S0102-09352011000600027
Greenwood, R. H., Morrill, J. L., Titgemeyer, E. C., & Kennedy, G. A. (1997). A new method of measuring diet abrasion and its effect on the development of the forestomach. Journal of Dairy Science, 80(10), 2534–2541. https://doi.org/10.3168/jds.S0022-0302(97)76207-6
Gupta, M., Khan, N., Rastogi, A., Haq, Z. U., & Varun, T. K. (2016). Nutritional drivers of rumen development: A review. Agricultural Reviews, 37(2), 148-153. https://doi.org/10.18805/ar.v37i2.10740
Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Janssen, P. H., Abecia, L., Angarita, E., Aravena, P., Arenas, G. N., Ariza, C., Attwood, G. T., Avila, J. M., Avila-Stagno, J., Bannink, A., Barahona, R., Batistotti, M., Bertelsen, M. F., Brown-Kav, A., & Zunino, P. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 5, 14567. https://doi.org/10.1038/srep14567
Kay, R. N. B., Engelhardt, W. V., & White, R. G. (1980). The digestive physiology of wild ruminants. In Y. Ruckebusch & P. Thivend (Eds.), Digestive physiology and metabolism in ruminants (pp. 743-761). Springer. https://doi.org/10.1007/978-94-011-8067-2_36
Kern, R. J., Lindholm-Perry, A. K., Freetly, H. C., Kuehn, L. A., Rule, D. C., & Ludden, P. A. (2016). Rumen papillae morphology of beef steers relative to gain and feed intake and the association of volatile fatty acids with kallikrein gene expression. Livestock Science, 187, 24–30. https://doi.org/10.1016/j.livsci.2016.02.007
Khorasani, G. R., Okine, E. K., & Kennelly, J. J. (2001). Effects of forage source and amount of concentrate on rumen and intestinal digestion of nutrients in late-lactation cows. Journal of Dairy Science, 84(5), 1156–1165. https://doi.org/10.3168/jds.S0022-0302(01)74576-6
Kotresh Prasad, C., Abraham, J., Panchbhai, G., Barman, D., Nag, P., & Ajithakumar, H. M. (2019). Growth performance and rumen development in Malabari kids reared under different production systems. Tropical Animal Health and Production, 51(1), 119–129. https://doi.org/10.1007/s11250-018-1666-8
Kristensen, N. B. (2005). Splanchnic metabolism of volatile fatty acids in the dairy cow. Animal Science, 80(1), 3–10. https://doi.org/10.1079/asc41250003
Lam, S., Munro, J. C., Zhou, M., Guan, L. L., Schenkel, F. S., Steele, M. A., Miller, S. P., & Montanholi, Y. R. (2018). Associations of rumen parameters with feed efficiency and sampling routine in beef cattle. Animal, 12(7), 1442–1450. https://doi.org/10.1017/S1751731117002750
Lin, M. F., Ang, S. L., Yangb, C. W., Hsua, J. T., & Wang, H. T. (2011). Study on the characteristics of gastrointestinal tract and rumen ecology of Formosan Reeves’. Journal of Applied Animal Research, 39(2), 142–146. https://doi.org/10.1080/09712119.2011.565560
Liu, L., Sun, D., Mao, S., Zhu, W., & Liu, J. (2019). Infusion of sodium butyrate promotes rumen papillae growth and enhances expression of genes related to rumen epithelial VFA uptake and metabolism in neonatal twin lambs. Journal of Animal Science, 97(2), 909–921. https://doi.org/https://doi.org/10.1093/jas/sky459
Ma, S. C., & Zhao, G. Y. (2010). Effects of acetic, propionic and butyric acids given intraruminally at different molar proportions or individually on rumen papillae growth and IGF-I and IGFBP-3 in plasma, liver and rumen tissue in growing sheep nourished by total intragastric infusions. African Journal of Biotechnology, 9(16), 2468–2473. https://doi.org/10.4314/ajb.v9i16
Malaysian Meteorological Department. (2018) Laporan tahunan [Annual report]. https://www.met.gov.my/content/pdf/penerbitan/laporantahunan/laporantahunan2018.pdf
Mao, S., Zhang, R., Wang, D., & Zhu, W. (2012). The diversity of the fecal bacterial community and its relationship with the concentration of volatile fatty acids in the feces during subacute rumen acidosis in dairy cows. BMC Veterinary Research, 8, 237. https://doi.org/10.1186/1746-6148-8-237
Marshal, J. P., Krausman, P. R., & Bleich, V. C. (2005). Rainfall, temperature, and forage dynamics affect nutritional quality of desert mule deer forage. Rangeland Ecology and Management, 58(4), 360–365. https://doi.org/https://doi.org/10.2111/1551-5028(2005)058[0360:RTAFDA]2.0.CO;2
Mason, F., Fotschki, B., Di Rosso, A., & Korzekwa, A. (2019). Influence of farming conditions on the rumen of red deer (Cervus elaphus). Animals, 9(9), 601. https://doi.org/10.3390/ani9090601
Masud, M. M., Rahman, M. S., Al-Amin, A. Q., Kari, F., & Filho, W. L. (2014). Impact of climate change: An empirical investigation of Malaysian rice production. Mitigation and Adaptation Strategies for Global Change, 19(4), 431–444. https://doi.org/10.1007/s11027-012-9441-z
McGrath, J., Duval, S. M., Tamassia, L. F. M., Kindermann, M., Stemmler, R. T., de Gouvea, V. N., Acedo, T. S., Immig, I., Williams, S. N., & Celi, P. (2018). Nutritional strategies in ruminants: A lifetime approach. Research in Veterinary Science, 116, 28–39. https://doi.org/10.1016/j.rvsc.2017.09.011
Melo, L. Q., Costa, S. F., Lopes, F., Guerreiro, M. C., Armentano, L. E., & Pereira, M. N. (2013). Rumen morphometrics and the effect of digesta pH and volume on volatile fatty acid absorption. Journal of Animal Science, 91(4), 1775–1783. https://doi.org/10.2527/jas.2011-4999
Mohd Azmi, A. F., Abu Hassim, H., Mohd Nor, N., Ahmad, H., Goh, Y. M., Abdullah, P., Abu Bakar, M. Z., Vera, J., Mohd Deli, N. S., Salleh, A., & Zamri-Saad, M. (2021). Comparative growth and economic performances between indigenous swamp and murrah crossbred buffaloes in Malaysia. Animals, 11(4), 957. https://doi.org/10.3390/ani11040957
Moore, K. J., & Jung, H. J. G. (2001). Lignin and fiber digestion. Journal of Range Management, 54(4), 420–430. https://doi.org/10.2307/4003113
Mottet, A., de Haan, C., Falcucci, A., Tempio, G., Opio, C., & Gerber, P. (2017). Livestock: On our plates or eating at our table? A new analysis of the feed/food debate. Global Food Security, 14, 1–8. https://doi.org/10.1016/j.gfs.2017.01.001
Moyer, J. R., & Hironaka, R. (1993). Digestible energy and protein content of some annual weeds, alfalfa, bromegrass, and tame oats. Canadian Journal of Plant Science, 73(4), 1305–1308. https://doi.org/10.4141/cjps93-169
Nurliani, A., Budipitojo, T., & Kusindarta, D. L. (2015). Morphological characteristics of the stomach of the swamp buffalo (Bubalus bubalis). Aceh International Journal of Science and Technology, 4(3), 78–82. https://doi.org/10.13170/aijst.4.3.3011
Palmieri, A. D., Oliveira, R. L., Ribeiro, C. V. D. M., Ribeiro, M. D., Ribeiro, R. D. X., Leão, A. G., Agy, M. S. F. A., & Ribeiro, O. L. (2012). Effects of substituting soybean meal for sunflower cake in the diet on the growth and carcass traits of crossbred Boer goat kids. Asian-Australasian Journal of Animal Sciences, 25(1), 59-65. https://doi.org/10.5713/ajas.2011.11140
Parmar, N. R., Solanki, J. V., Patel, A. B., Shah, T. M., Patel, A. K., Parnerkar, S., Kumar, J. I., N., & Joshi, C. G. (2014). Metagenome of Mehsani buffalo rumen microbiota: An assessment of variation in feed-dependent phylogenetic and functional classification. Journal of Molecular Microbiology and Biotechnology, 24(4), 249–261. https://doi.org/10.1159/000365054
Penner, G. B., Taniguchi, M., Guan, L. L., Beauchemin, K. A., & Oba, M. (2009). Effect of dietary forage to concentrate ratio on volatile fatty acid absorption and the expression of genes related to volatile fatty acid absorption and metabolism in ruminal tissue. Journal of Dairy Science, 92(6), 2767–2781. https://doi.org/10.3168/jds.2008-1716
Rostini, T., Zakir, I., & Biyatmoko, D. (2018). Different in quantity of microbial rumen fluid of river buffalo and swamp buffalo. In Proceedings of the International Conference on Applied Science and Engineering (Vol. 175, pp. 118–119). Atlantis Press. https://doi.org/https://doi.org/10.2991/icase-18.2018.32
Savsani, H. H., Murthy, K. S., Gajbhiye, P. U., Vataliya, P. H., Dutta, K. S., Gadariya, M. R., & Bhadaniya, A. R. (2017). Economics of rumen bypass fat feeding on cost of milk production, feeding and realizable receipts in lactating Jaffrabadi buffaloes. Buffalo Bulletin, 36(1), 193–198.
Saw, H. Y., Janaun, J. S., Kumaresan, S., & Chu, C. M. (2012). Characterization of the physical properties of palm kernel cake. International Journal of Food Properties, 15(3), 536–548. https://doi.org/10.1080/10942912.2010.492543
Shen, Z., Kuhla, S., Zitnan, R., Seyfert, H. M., Schneider, F., Hagemeister, H., Chudy, A., Löhrke, B., Blum, J. W., Hammon, H. M., & Voigt, J. (2005). Intraruminal infusion of n-butyric acid induces an increase of ruminal papillae size independent of IGF-1 system in castrated bulls. Archives of Animal Nutrition, 59(4), 213–225. https://doi.org/10.1080/17450390500216894
Silanikove, N. (2000). Effects of heat stress on the welfare of extensively managed domestic ruminants. Livestock Production Science, 67(1–2), 1–18. https://doi.org/10.1016/S0301-6226(00)00162-7
Steele, M. A., Croom, J., Kahler, M., AlZahal, O., Hook, S. E., Plaizier, K., & McBride, B. W. (2011). Bovine rumen epithelium undergoes rapid structural adaptations during grain-induced subacute ruminal acidosis. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 300(6), R1515–R1523. https://doi.org/10.1152/ajpregu.00120.2010
Storm, A. C., Kristensen, N. B., & Hanigan, M. D. (2012). A model of ruminal volatile fatty acid absorption kinetics and rumen epithelial blood flow in lactating Holstein cows. Journal of Dairy Science, 95(6), 2919–2934. https://doi.org/10.3168/jds.2011-4239
Suárez, B. J., Van Reenen, C. G., Stockhofe, N., Dijkstra, J., & Gerrits, W. J. J. (2007). Effect of roughage source and roughage to concentrate ratio on animal performance and rumen development in veal calves. Journal of Dairy Science, 90(5), 2390–2403. https://doi.org/10.3168/jds.2006-524
Suarez-Mena, F. X., Heinrichs, A. J., Jones, C. M., Hill, T. M., & Quigley, J. D. (2016). Straw particle size in calf starters: Effects on digestive system development and rumen fermentation. Journal of Dairy Science, 99(1), 341–353. https://doi.org/10.3168/jds.2015-9884
Suhaimi, A., Bustami, Y., & Saihani, A. (2019). Assessment of comparative advantage and development strategy for swamp buffalo livestock in Hulu Sungai Utara regency, South Kalimantan. Asian Journal of Scientific Research, 12(2), 271–278. https://doi.org/10.3923/ajsr.2019.271.278
Suphachavalit, S., Sricharoen, P., Luesopha, T., Srisakdi, T., Na-Chiangmai, A., & Boonprong, S. (2013). Swamp buffalo production system and needs for extension on local scale farmers in the lower northeast of Thailand. Buffalo Bulletin, 32, 1204–1207.
Sutton, J. D., Dhanoa, M. S., Morant, S. V, France, J., Napper, D. J., & Schuller, E. (2003). Rates of production of acetate, propionate, and butyrate in the rumen of lactating dairy cows given normal and low-roughage diets. Journal of Dairy Science, 86(11), 3620–3633. https://doi.org/10.3168/jds.S0022-0302(03)73968-X
Temple, D., & Manteca, X. (2020). Animal welfare in extensive production systems is still an area of concern. Frontiers in Sustainable Food Systems, 4, 154–172. https://doi.org/10.3389/fsufs.2020.545902
Van Kessel, J. A. S., & Russell, J. B. (1996). The effect of pH on ruminal methanogenesis. FEMS Microbiology Ecology, 20(4), 205–210. https://doi.org/10.1016/0168-6496(96)00030-X
Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
Wanapat, M., & Pimpa, O. (1999). Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian-Australasian Journal of Animal Sciences, 12(6), 904–907. https://doi.org/10.5713/ajas.1999.904
Wanapat, M., Kang, S., & Polyorach, S. (2013). Development of feeding systems and strategies of supplementation to enhance rumen fermentation and ruminant production in the tropics. Journal of Animal Science and Biotechnology, 4, 32. https://doi.org/10.1186/2049-1891-4-32
Wanapat, M., Pilajun, R., & Kongmun, P. (2009). Ruminal ecology of swamp buffalo as influenced by dietary sources. Animal Feed Science and Technology, 151(3–4), 205–214. https://doi.org/10.1016/j.anifeedsci.2009.01.017
Wang, L., Zhang, G., Li, Y., & Zhang, Y. (2020). Effects of high forage / concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals, 10(2), 223–235. https://doi.org/https://doi.org/10.3390/ani10020223
Wang, L., Zhou, Q., & Zheng, G. H. (2006). Comprehensive analysis of the factors for propionic acid accumulation in acidogenic phase of anaerobic process. Environmental Technology, 27(3), 269–276. https://doi.org/10.1080/09593332708618640
Wang, Y. H., Xu, M., Wang, F. N., Yu, Z. P., Yao, J. H., Zan, L. S., & Yang, F. X. (2009). Effect of dietary starch on rumen and small intestine morphology and digesta pH in goats. Livestock Science, 122(1), 48–52. https://doi.org/10.1016/j.livsci.2008.07.024
Wanna, M., Pisai, W., & Sorachai, K. (2012). Production efficiency of swamp buffaloes and Mehsana river buffalo. Buffalo Bulletin, 31(1), 40–45.
Xu, M., Dong, Y., Du, S., Hao, Y. S., Wang, Y. H., Wang, F. N., & Yao, J. H. (2009). Effect of corn particle size on mucosal morphology and digesta pH of the gastrointestinal tract in growing goats. Livestock Science, 123(1), 34–37. https://doi.org/10.1016/j.livsci.2008.10.00
ISSN 1511-3701
e-ISSN 2231-8542