PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 45 (2) May. 2022 / JTAS-2384-2021

 

Development of Polyculture Engineering Technology on Milkfish and Mud Crab Farming

Istiyanto Samidjan, Diana Rachmawati and Putut Har Riyadi

Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 2, May 2022

DOI: https://doi.org/10.47836/pjtas.45.2.03

Keywords: Growth, milkfish, mud crabs, polyculture, survivability

Published on: 13 May 2022

The current study aimed to evaluate the role of polyculture engineering technology on milkfish and mud crab farming and observe the growth and survivability of different milkfish and mud crab combinations. The study used milkfish, which was received artificial feed containing 35 % protein content enriched with vitamin E (3%/biomass/day). The study used completely randomized design with 4 treatments (n = 3): T1 = 5 milkfish + 5 mud crab, T2 = 10 milkfish + 5 mud crab, T3 = 5 milkfish + 10 mud crab, T4 = 10 milkfish + 10 mud crab. The following parameters were measured: absolute weight growth, survival rate, feed conversion rate (FCR), and water quality. The difference in the density of milkfish and mud crabs significantly affected (p < 0.05) the growth and survivability of milkfish and mud crabs. The polyculture cultivation system exhibited a significant increase in absolute weight growth of milkfish and mud crabs, which is the highest increase found in T4 treatment (187.85 g ± 0.9 g and 60.65 g ± 0.95 g, respectively). Meanwhile, the survival rate of milkfish and mud crab was 95% ± 0.3% and 95% ± 2.3%, respectively, followed by a lower FCR at T4 (1.54 ± 0.10). The water quality remained good for fish and mud crabs to survive. Milkfish and mud crab polyculture greatly affect the abundance of phytoplankton, demonstrating good community structure.

  • Agbayani, R. F. (2001). Production economics and marketing of mud crabs in the Philippines. Asian Fisheries Science, 14(2), 201-210. https://doi.org/10.33997/j.afs.2001.14.2.010

  • Ali, M. A., Hossain, G. S., Biswas, M. M. R., Barman, S. K., & Huq, K. A. (2009). Polyculture and integrated culture pattern of freshwater prawn in fresh to hyposaline water. International Journal of Sustainable Crop Production, 4(4), 23–27.

  • Araújo-Silva, S. L., Moraes, M. D. A. B., do Carmo, C. F., Osti, J. A. S., Vaz-dos-Santos, A. M., & Mercante, C. T. J. (2014). Effluent of a polyculture system (tilapias and shrimps): Assessment by mass balance of nitrogen and phosphorus. Journal of Environmental Protection, 5(10), 797–802. https://doi.org/10.4236/jep.2014.510081

  • Asadujjaman, M., Biswas, S., Manirujjaman, M., Rahman, M., Hossain, M. A., & Islam, M. A. (2015). Determination of protein, lipid and carbohydrate contents of conventional and non-conventional feed items used in carp polyculture pond. Journal of Aquaculture Research and Development, 6(2), 1000301. https://doi.org/10.4172/2155-9546.1000301

  • Barman, U. K., Garg, S. K., & Bhatnagar, A. (2012). Effect of different salinity and ration levels on growth performance and nutritive physiology of milkfish, Chanos chanos (Forsskal) - Field and laboratory studies. Fisheries and Aquaculture Journal, 2012, FAJ-53. https://doi.org/10.4172/2150-3508.1000053

  • Basmi, H. J. (2000). Planktonologi: Plankton sebagai bioindikator kualitas perairan [Planktonology: Plankton as a bioindicator of water quality]. Institut Pertanian Bogor.

  • Chopin, T. (2013). Aquaculture, integrated multi-trophic (IMTA). In P. Christou, R. Savin, B. A. Costa-Pierce, I. Misztal, & C. B. A. Whitelaw (Eds.), Sustainable food production (pp. 195-217). Springer. https://doi.org/10.1007/978-1-4614-5797-8_173

  • Davis, J. (2011). Polyculture opportunities in the mid-hills of Nepal for resource poor farmers: Ecological aquaculture studies and reviews. University of Rhode Island.

  • De-shang, L., & Shuang-lin, D. (2000). Summary of studies on closed-polyculture of penaeid shrimp with fishes and moluscans. Chinese Journal of Oceanology and Limnology, 18, 61–66. https://doi.org/10.1007/BF02842543

  • Dolgov, A. V., & Prokopchuk I. P. (2018). Macrozooplankton of the Arctic - The Kara Sea in relation to environmental conditions: A comment on Dvoretsky and Dvoretsky (2017). Estuarine, Coastal and Shelf Science, 209, 205-207. https://doi.org/10.1016/j.ecss.2018.05.010

  • Gaillard, J. (2010). Development of the mud crab sector in three provinces of the Philippines – Constraints and prospects. https://www.doc-developpement-durable.org/file/Elevages/crabes/development%20of%20the%20mud%20crab%20sector_Philippines.pdf

  • Ghosh, D., Sathianandan, T. V., & Vijayagopal, P. (2011). Feed formulation using linear programming for fry of catfish, milkfish, tilapia, Asian sea bass, and grouper in India. Journal of Applied Aquaculture, 23(1), 85–101. https://doi.org/10.1080/10454438.2011.549781

  • Ihsan, Y. N. (2012). Nutrient fluxes in multitrophic aquaculture systems [Master’s thesis, University of Kiel]. University of Kiel Repository. https://www.tierzucht.uni-kiel.de/de/forschung/dissertationen-1/diss_ihsan_12.pdf

  • Jamerlan, G. S., Coloso, R. M., & Golez, N. V. (2014). Intensive culture of milkfish Chanos chanos in polyculture with white shrimp Penaeus indicus or mud crab Scylla serrata in brackishwater earthen ponds. Aquaculture Department, Southeast Asian Fisheries Development Center.

  • Jaspe, C. J., Caipang, C. M. A., & Elle, B. J. G. (2011). Polyculture of white shrimp, Litopenaeus vannamei and milkfish, Chanos chanos as a strategy for efficient utilization of naturalfood production in ponds. Animal Biology and Animal Husbandry, 3(2), 96-104.

  • Kwon, H. K., Kim, G., Lim, W. A., & Park, J. W. (2018). In-situ production of humic-like fluorescent dissolved organic matter during Cochlodinium polykrikoides blooms. Estuarine, Coastal and Shelf Science, 203, 119-126. https://doi.org/10.1016/j.ecss.2018.02.013

  • Lall, S. P. (2000, 19-22 November). Nutrition and health of fish. In L. E. Cruz-Suárez, D. Ricque-Marie, M. Tapia-Salazar, M. A. Olvera-Novoa, & R. Civera-Cerecedo (Eds.), Avances en Nutrición Acuícola V. Memorias del V Simposium Internacional de Nutrición Acuícola, Mérida, Yucatán, Mexico (pp. 13-23).

  • Laxmappa, B., & Khrisna, S. M. (2015). Polyculture of the freshwater prawn Macrobrachium malcolmsonii (H. M. Edwards) in Koilsagar reservoir of Mahabubnagar district (TS), India. International Journal of Fisheries and Aquatic Studies, 2(4), 147–152.

  • Malleo, J. (2011). Economics of mud crabs farming in Pangani: Is there significant income contribution to the coastal community?. https://vdocuments.net/economics-of-mud-crabs-farming-in-economics-of-mud-crabs-farming-in-pangani.html?page=1

  • Martan E. (2008). Polyculture of fishes in aquaponics and recirculating aquaculture. Aquaponics Journal, 48(1), 28–33.

  • Miroslav, C., Dejana, T., Dragana, L., & Vesna, D. (2011). Meat quality of fish farmed in polyculture in carp ponds in Republic of Serbia. Technologija Mesa, 52(1), 67–68.

  • Monwar, M. M., Ruhul, A. K. M., Sarker, A., & Das, N. G. (2017). Polyculture of seabass with tilapia for the utilization of brown fields in the coastal areas of Cox’s Bazar, Bangladesh. International Journal of Fisheries and Aquaculture, 5(6), 104–109. https://doi.org/10.5897/IJFA2013.0347

  • Napiórkowska-Krzebietke, A. (2017). Phytoplankton as a basic nutritional source in diets of fish. Journal of Elementology, 22(3), 831-841. https://doi.org/10.5601/jelem.2016.21.4.1375

  • Nunes, J. P., Ferreira, J. G., Gazeau, F., Lencart-Silva, J., Zhang, X. L., Zhu, M. Y., & Fang, J. G. (2003). A model for sustainable management of shellfish polyculture in coastal bays. Aquaculture, 219(1–4), 257–277. https://doi.org/10.1016/S0044-8486(02)00398-8

  • Primavera, J. H. (2006). Overcoming the impacts of aquaculture on the coastal zone. Ocean and Coastal Management, 49(9–10), 531–545. https://doi.org/10.1016/j.ocecoaman.2006.06.018

  • Samidjan, I., & Rachmawati, D. (2016). Effect of artificial feed on the growth and survival of white shrimp (Litopenaeus vannamei) and milkfish (Chanos chanos) in application of innovative polyculture technology. Jurnal Teknologi, 78(4–2), 91–98. https://doi.org/10.11113/jt.v78.8187

  • Samidjan, I., & Rachmawati, D. (2018). Engineering technology of fish farming floating nets cages on polka dot grouper (Cromileptes altivelis) used artificial feed enriched phytase enzyme. In IOP Conference Series: Earth and Environmental Science (Vol. 116, No. 1, p. 012010). IOP Publishing. https://doi.org/10.1088/1755-1315/116/1/012010

  • Samidjan, I., Dody, S., & Rachmawati, D. (2020). Biodiversity of phytoplankton from polyculture milkfish and white shrimp vanname pond culture waters, Pekalongan region. In IOP Conference Series: Earth and Environmental Science (Vol. 530, No. 1, p. 012040). IOP Publishing. https://doi.org/10.1088/1755-1315/530/1/012040

  • Samidjan, I., Hutabarat, Y., Rachmawati, D., & Herawati, V. E. (2019). The effect of polyculture white shrimp vannamei and seaweed on different plant distance on growth, survival and phytoplankton abundance. Aquacultura Indonesiana, 20(2), 57-71. https://doi.org/10.21534/ai.v20i2.140

  • Siskey, M., & Baldwin, R. (2011). Integrated multi-trophic aquaculture - TECH 797. https://nsgl.gso.uri.edu/nhu/nhut11004.pdf

  • Solomon, J. R., & Ezigbo, M. N. (2010). Polyculture of heteroclarias / tilapia under different feeding regimes. New York Science Journal, 3(10), 42–57.

  • Spellerberg, I. F., & Fedor, P. J. (2003). A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Global Ecology and Biogeography, 12(3), 177–179. https://doi.org/10.1046/j.1466-822X.2003.00015.x

  • Suhartono, S. & Istiyanto, S. (2014). Dynamic model development to improve grouper cultivation production in floating net cages in Karimun Java islands, Jepara. Journal of Applied Mathematical Sciences, 8(179), 8921–8928. https://doi.org/10.12988/ams.2014.48652

  • Sun, W., & Boyd, C. E. (2013). Phosphorus and nitrogen budgets for inland, saline water shrimp ponds in Alabama. Fisheries and Aquaculture Journal, 4(1), 1000080. https://doi.org/10.4172/2150-3508.1000080

  • Tan, S. N., Teng, S. T., Lim, H. C., Kotaki, Y., Bates, S. S., Leaw, C. P., & Lim, P. T. (2016). Diatom Nitzschia navis-varingica (Bacillariophyceae) and its domoic acid production from the mangrove environments of Malaysia. Harmful Algae, 60, 139-149. https://doi.org/10.1016/j.hal.2016.11.003

  • Ulfah, M., Fajri, S. N., Nasir, M., Hamsah, K., & Purnawan, S. (2019). Diversity, evenness and dominance index reef fish in Krueng Raya Water, Aceh Besar. In IOP Conference Series: Earth and Environmental Science (Vol. 348, No. 1, p. 012074). IOP Publishing. https://doi.org/10.1088/1755-1315/348/1/012074

  • Venugopal, G., Razvi, S. S. H., Babu, P. P. S., Reddy, P. R., Mohan, K. M., & Srinivasa, P. (2012). Performance evaluation of mud crab Scylla serrata (Forskal, 1775) in monoculture, monosex culture and polyculture. Journal of the Marine Biological Association of India, 54(2), 5–8.

  • Xie, B., Jiang, W., & Yang, H. (2011). Growth performance and nutrient quality of Chinese shrimp Penaeus chinensis in organic polyculture with razor clam Sinonovacula constricta or hard clam Meretrix meretrix. Bulgarian Journal of Agricultural Science, 17(6), 851–858.

  • Yang, Y., & Fitzsimmons, K. (2002). Tilapia shrimp polyculture in Thailand. Asian Institute of Technology.

  • Yuan, D., Yi, Y., Yakupitiyage, A., Fitzsimmons, K., & Diana, J. S. (2010). Effects of addition of red tilapia (Oreochromis spp.) at different densities and sizes onproduction, water quality and nutrient recovery of intensive culture of white shrimp (Litopenaeus vannamei) in cement tanks. Aquaculture, 298(3-4), 226–238. https://doi.org/10.1016/j.aquaculture.2009.11.011

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2384-2021

Download Full Article PDF

Share this article

Recent Articles