PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 44 (3) Aug. 2021 / JTAS-2235-2021

 

Genome Editing for the Development of Rice Resistance against Stresses: A Review

Zarina Zainuddin, Nurul Asyikin Mohd-Zim, Nur Sabrina Ahmad Azmi, Siti Habsah Roowi and Nurul Hidayah Samsulrizal

Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 3, August 2021

DOI: https://doi.org/10.47836/pjtas.44.3.06

Keywords: Abiotic stress, biotic stress, genome editing, rice

Published on: 30 August 2021

Food security is the most crucial issue faced by humans considering the rising population. Rice, a staple food consumed by nearly 50% of the world’s population, faces challenges to meet the consumers’ demand to ensure self-sufficiency amidst various abiotic and biotic stresses. Drought, salinity, heat, and infection by bacteria and viruses are the main challenges in rice cultivation. Genome editing technology provides abundant opportunities to implement selective genome modifications. Moreover, it finds the functional implications of different genome components in rice and provides a new approach for creating rice varieties tolerant of stresses. This review focuses on rice production worldwide and challenges faced in rice cultivation, and current genome editing tools available that can be utilised for crop breeding and improvement. In addition, the application of genome editing to develop biotic and abiotic resistance rice varieties is critically discussed.

  • Abdullah, Jiang, Z., Hong, X., Zhang, S., Yao, R., & Xiao, Y. (2020). CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. Synthetic and Systems Biotechnology, 5(4), 277–292. https://doi.org/10.1016/j.synbio.2020.08.003

  • Abo, M. E., & Sy, A. A. (1997). Rice virus diseases: Epidemiology and management strategies. Journal of Sustainable Agriculture, 11(2–3), 113–134. https://doi.org/10.1300/J064v11n02_09

  • Alam, M. M., Siwar, C., Toriman, M. E., Molla, R. I., & Talib, B. (2012). Climate change induced adaptation by paddy farmers in Malaysia. Mitigation and Adaptation Strategies for Global Change, 17(2), 173–186. https://doi.org/10.1007/s11027-011-9319-5

  • Alemu, D., & Assaye, A. (2020). Devastating effect of floods on rice production and commercialisation in the Fogera plain. https://www.future-agricultures.org/blog/devastating-effect-of-floods-on-rice-production-and-commercialisation-in-the-fogera-plain/

  • Antony, G., Zhou, J., Huang, S., Li, T., Liu, B., White, F., & Yang, B. (2010). Rice Xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. The Plant Cell, 22(11), 3864–3876. https://doi.org/10.1105/tpc.110.078964

  • Anzalone, A. V, Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., & Liu, D. R. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576(7785), 149–157. https://doi.org/10.1038/s41586-019-1711-4

  • Blanvillain-Baufumé, S., Reschke, M., Solé, M., Auguy, F., Doucoure, H., Szurek, B., Meynard, D., Portefaix, M., Cunnac, S., & Guiderdoni, E. (2017). Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnology Journal, 15(3), 306–317. https://doi.org/10.1111/pbi.12613

  • Boettcher, M., & McManus, M. T. (2015). Choosing the right tool for the job: RNAi, TALEN, or CRISPR. Molecular Cell, 58(4), 575–585. https://doi.org/10.1016/j.molcel.2015.04.028

  • Bunawan, H., Dusik, L., Bunawan, S. N., & Amin, N. M. (2014). Rice tungro disease: From identification to disease control. World Applied Sciences Journal, 31(6), 1221–1226.

  • Butt, H., Rao, G. S., Sedeek, K., Aman, R., Kamel, R., & Mahfouz, M. (2020). Engineering herbicide resistance via prime editing in rice. Plant Biotechnology Journal, 18(12), 2370–2372. https://doi.org/https://doi.org/10.1111/pbi.13399

  • Cai, L., Cao, Y., Xu, Z., Ma, W., Zakria, M., Zou, L., Cheng, Z., & Chen, G. (2017). A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Scientific Reports, 7(1), 5089. https://doi.org/10.1038/s41598-017-04800-8

  • Clermont-Dauphin, C., Suwannang, N., Grünberger, O., Hammecker, C., & Maeght, J. L. (2010). Yield of rice under water and soil salinity risks in farmers’ fields in northeast Thailand. Field Crops Research, 118(3), 289–296. https://doi.org/https://doi.org/10.1016/j.fcr.2010.06.009

  • Climate Change Cell. (2009). Climate change and health impacts in Bangladesh. https://www.iucn.org/sites/dev/files/import/downloads/health.pdf

  • Cohn, M., Bart, R. S., Shybut, M., Dahlbeck, D., Gomez, M., Morbitzer, R., Hou, B.-H., Frommer, W. B., Lahaye, T., & Staskawicz, B. J. (2014). Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector–mediated induction of a SWEET sugar transporter in cassava. Molecular Plant-Microbe Interactions, 27(11), 1186–1198. https://doi.org/10.1094/mpmi-06-14-0161-r

  • Couch, B. C., & Kohn, L. M. (2002). A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia, 94(4), 683–693. https://doi.org/10.1080/15572536.2003.11833196

  • Dai, S., & Beachy, R. N. (2009). Genetic engineering of rice to resist rice tungro disease. In vitro Cellular and Developmental Biology-Plant, 45(5), 517. https://doi.org/10.1007/s11627-009-9241-7

  • Doudna, J. A., & Charpentier, E. (2014). Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346(6213), 1258096. https://doi.org/10.1126/science.1258096

  • Ettang, I. (2020, September 30). Nigeria loses a quarter of rice production to floods. VOA News. https://www.voanews.com/africa/nigeria-loses-quarter-rice-production-floods#:~:text=ARGUNGU - Farmers in northern Nigeria, smuggling and boost local production

  • Fang, H., Meng, Q., Xu, J., Tang, H., Tang, S., Zhang, H., & Huang, J. (2015). Knock-down of stress inducible OsSRFP1 encoding an E3 ubiquitin ligase with transcriptional activation activity confers abiotic stress tolerance through enhancing antioxidant protection in rice. Plant Molecular Biology, 87(4–5), 441–458.

  • Food and Agriculture Organization. (2020). Crops. FAO. http://www.fao.org/faostat/en/#data/QC/visualize

  • Gnanamanickam, S. S. (Ed.) (2009). Major diseases of rice. In Biological control of rice diseases (pp. 13–42). Springer Netherlands. https://doi.org/10.1007/978-90-481-2465-7_2

  • Hibino, H., Saleh, N., & Roechan, M. (1979). Transmission of two kinds of rice tungro-associated viruses by insect vectors. Phytopathology, 69(12), 1266–1268.

  • Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821. https://doi.org/10.1126/science.1225829

  • Joung, J. K., & Sander, J. D. (2013). TALENs: A widely applicable technology for targeted genome editing. Nature Reviews Molecular Cell Biology, 14(1), 49–55. https://doi.org/10.1038/nrm3486

  • Kim, Y.-A., Moon, H., & Park, C.-J. (2019). CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice, 12(1), 67. https://doi.org/10.1186/s12284-019-0325-7

  • Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A., & Liu, D. R. (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature, 533(7603), 420–424. https://doi.org/10.1038/nature17946

  • Kotwica-Rolinska, J., Chodakova, L., Chvalova, D., Kristofova, L., Fenclova, I., Provaznik, J., Bertolutti, M., Wu, B. C.-H., & Dolezel, D. (2019). CRISPR/Cas9 genome editing introduction and optimization in the non-model insect Pyrrhocoris apterus. Frontiers in Physiology, 10, 891. https://doi.org/10.3389/fphys.2019.00891

  • Li, C.-H., Wang, G., Zhao, J.-L., Zhang, L.-Q., Ai, L.-F., Han, Y.-F., Sun, D.-Y., Zhang, S.-W., & Sun, Y. (2014). The receptor-like kinase SIT1 mediates salt sensitivity by activating MAPK3/6 and regulating ethylene homeostasis in rice. The Plant Cell, 26(6), 2538–2553. https://doi.org/10.1105%2Ftpc.114.125187

  • Li, C., Li, W., Zhou, Z., Chen, H., Xie, C., & Lin, Y. (2020). A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene-free bacterial blight-resistant rice. Plant Biotechnology Journal, 18(2), 313. https://doi.org/10.1111/pbi.13217

  • Li, S., Shen, L., Hu, P., Liu, Q., Zhu, X., Qian, Q., Wang, K., & Wang, Y. (2019). Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. Journal of Integrative Plant Biology, 61(12), 1201–1205. https://doi.org/10.1111/jipb.12774

  • Li, T., Liu, B., Spalding, M. H., Weeks, D. P., & Yang, B. (2012). High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology, 30(5), 390-392. https://doi.org/10.1038/nbt.2199

  • Liang, P., Ding, C., Sun, H., Xie, X., Xu, Y., Zhang, X., Sun, Y., Xiong, Y., Ma, W., Liu, Y., Wang, Y., Fang, J., Liu, D., Songyang, Z., Zhou, C., & Huang, J. (2017). Correction of β-thalassemia mutant by base editor in human embryos. Protein and Cell, 8(11), 811–822. https://doi.org/10.1007/s13238-017-0475-6

  • Liao, S., Qin, X., Luo, L., Han, Y., Wang, X., Usman, B., Nawaz, G., Zhao, N., Liu, Y., & Li, R. (2019). CRISPR/Cas9-induced mutagenesis of Semi-rolled leaf1,2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ros scavenging in rice (Oryza sativa L.). Agronomy, 9(11), 728.

  • Lin, Q., Zong, Y., Xue, C., Wang, S., Jin, S., Zhu, Z., Wang, Y., Anzalone, A. V, Raguram, A., Doman, J. L., Liu, D. R., & Gao, C. (2020). Prime genome editing in rice and wheat. Nature Biotechnology, 38(5), 582–585. https://doi.org/10.1038/s41587-020-0455-x

  • Lu, G., Wang, C., Wang, G., Mao, G., Habben, J. E., Chen, G., Liu, M., Shi, Y., Wang, W., Wang, X., Li, H., Gao, Y., Qu, P., Mo, H., Beatty, M. K., Lafitte, R., Lassner, M. W., Brogile, R. M., Liu, J., & Greene, T. W. (2020). Knockouts of drought sensitive genes improve rice grain yield under both drought and well-watered field conditions. Advances in Crop Science and Technology, 8(3), 444.

  • Ma, J., Chen, J., Wang, M., Ren, Y., Wang, S., Lei, C., Cheng, Z., & Sodmergen. (2018). Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. Journal of Experimental Botany, 69(5), 1051–1064. https://doi.org/10.1093/jxb/erx458

  • Ma, Y., Dai, X., Xu, Y., Luo, W., Zheng, X., Zeng, D., Pan, Y., Lin, X., Liu, H., & Zhang, D. (2015). COLD1 confers chilling tolerance in rice. Cell, 160(6), 1209–1221. https://doi.org/10.1016/j.cell.2015.01.046

  • Macovei, A., Sevilla, N. R., Cantos, C., Jonson, G. B., Slamet-Loedin, I., Čermák, T., Voytas, D. F., Choi, I.-R., & Chadha-Mohanty, P. (2018). Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnology Journal, 16(11), 1918–1927. https://doi.org/10.1111/pbi.12927

  • Mahfouz, M. M., Li, L., Shamimuzzaman, M., Wibowo, A., Fang, X., & Zhu, J.-K. (2011). De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America, 108(6), 2623–2628. https://doi.org/10.1073/pnas.1019533108

  • Malzahn, A. A., Tang, X., Lee, K., Ren, Q., Sretenovic, S., Zhang, Y., Chen, H., Kang, M., Bao, Y., Zheng, X., Deng, K., Zhang, T., Salcedo, V., Wang, K., Zhang, Y., & Qi, Y. (2019). Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology, 17(1), 9. https://doi.org/10.1186/s12915-019-0629-5

  • Markossian, S., & Flamant, F. (2016). CRISPR/Cas9: A breakthrough in generating mouse models for endocrinologists. Journal of Molecular Endocrinology, 57(2), R81–R92. https://doi.org/10.1530/JME-15-0305

  • Mills, G., Pleijel, H., Malley, C. S., Sinha, B., Cooper, O. R., Schultz, M. G., Neufeld, H. S., Simpson, D., Sharps, K., Feng, Z., Gerosa, G., Harmens, H., Kobayashi, K., Saxena, P., Paoletti, E., Sinha, V., & Xu, X. (2018). Tropospheric ozone assessment report: Present-day tropospheric ozone distribution and trends relevant to vegetation. Elementa: Science of the Anthropocene, 6, 47. https://doi.org/10.1525/elementa.302

  • Mino, T., Aoyama, Y., & Sera, T. (2009). Efficient double-stranded DNA cleavage by artificial zinc-finger nucleases composed of one zinc-finger protein and a single-chain FokI dimer. Journal of Biotechnology, 140(3–4), 156–161. https://doi.org/10.1016/j.jbiotec.2009.02.004

  • Mishra, R., Joshi, R. K., & Zhao, K. (2018). Genome editing in rice: Recent advances, challenges, and future implications. Frontiers in Plant Science, 9, 1361. https://doi.org/10.3389/fpls.2018.01361

  • Mishra, R., Zheng, W., Joshi, R.K. and Kaijun, Z.(2021). Genome editing strategies towards enhancement of rice disease resistance. Rice Science, 28(2), 133-145. https://doi.org/10.1016/j.rsci.2021.01.003

  • Nakade, S., Yamamoto, T., & Sakuma, T. (2017). Cas9, Cpf1 and C2c1/2/3 - What’s next?. Bioengineered, 8(3), 265–273. https://doi.org/10.1080/21655979.2017.1282018

  • Niño-Liu, D. O., Ronald, P. C., & Bogdanove, A. J. (2006). Xanthomonas oryzae pathovars: Model pathogens of a model crop. Molecular Plant Pathology, 7(5), 303–324. https://doi.org/10.1111/j.1364-3703.2006.00344.x

  • Oliva, R., Ji, C., Atienza-Grande, G., Huguet-Tapia, J. C., Perez-Quintero, A., Li, T., Eom, J.-S., Li, C., Nguyen, H., Liu, B., Auguy, F., Sciallano, C., Luu, V. T., Dossa, G. S., Cunnac, S., Schmidt, S. M., Slamet-Loedin, I. H., Vera Cruz, C., Szurek, B., … Yang, B. (2019). Broad-spectrum resistance to bacterial blight in rice using genome editing. Nature Biotechnology, 37(11), 1344–1350. https://doi.org/10.1038/s41587-019-0267-z

  • Paixão, J. F. R., Gillet, F.-X., Ribeiro, T. P., Bournaud, C., Lourenço-Tessutti, I. T., Noriega, D. D., de Melo, B. P., de Almeida-Engler, J., & Grossi-de-Sa, M. F. (2019). Improved drought stress tolerance in Arabidopsis by CRISPR/dCas9 fusion with a histone acetyltransferase. Scientific Reports, 9(1), 8080. https://doi.org/10.1038/s41598-019-44571-y

  • Pandey, S., & Bhandari, H. (2009). Drought: Economic costs and research implications. In R. Serraj, J. Bennet, & B. Hardy (Eds.), Drought frontiers in rice (pp. 3–17). World Scientific. https://doi.org/doi:10.1142/9789814280013_0001

  • Pereira, A. (2016). Plant abiotic stress challenges from the changing environment. Frontiers in Plant Science, 7, 1123. https://doi.org/10.3389%2Ffpls.2016.01123

  • Pernstich, C., & Halford, S. E. (2012). Illuminating the reaction pathway of the FokI restriction endonuclease by fluorescence resonance energy transfer. Nucleic Acids Research, 40(3), 1203–1213. https://doi.org/10.1093/nar/gkr809

  • Petolino, J. F. (2015). Genome editing in plants via designed zinc finger nucleases. In vitro Cellular and Developmental Biology - Plant, 51(1), 1–8. https://doi.org/10.1007/s11627-015-9663-3

  • Prabnakorn, S., Maskey, S., Suryadi, F. X., & de Fraiture, C. (2018). Rice yield in response to climate trends and drought index in the Mun River Basin, Thailand. Science of The Total Environment, 621, 108–119. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.11.136

  • Ray, D. K., Mueller, N. D., West, P. C., & Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. PLOS One, 8(6), e66428. https://doi.org/10.1371/journal.pone.0066428

  • Ren, F., Ren, C., Zhang, Z., Duan, W., Lecourieux, D., Li, S., & Liang, Z. (2019). Efficiency optimization of CRISPR/Cas9-mediated targeted mutagenesis in grape. Frontiers in Plant Science, 10, 612. https://doi.org/10.3389%2Ffpls.2019.00612

  • Sakulkoo, W., Osés-Ruiz, M., Oliveira Garcia, E., Soanes, D. M., Littlejohn, G. R., Hacker, C., Correia, A., Valent, B., & Talbot, N. J. (2018). A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science, 359(6382), 1399–1403. https://doi.org/10.1126/science.aaq0892

  • Schachtsiek, J., & Stehle, F. (2019). Nicotine-free, nontransgenic tobacco (Nicotiana tabacum L.) edited by CRISPR-Cas9. Plant Biotechnology Journal, 17(12), 2228–2230. https://doi.org/https://doi.org/10.1111/pbi.13193

  • Shim, J. S., Oh, N., Chung, P. J., Kim, Y. S., Choi, Y. Do, & Kim, J.-K. (2018). Overexpression of OsNAC14 improves drought tolerance in rice. Frontiers in Plant Science, 9, 310. https://doi.org/10.3389/fpls.2018.00310

  • Singh, P., Verma, R. L., Singh, R. S., Singh, R. P., Singh, H. B., Arsode, P., Kumar, M., & Singh, P. K. (2020). Biotic stress management in rice (Oryza sativa L.) through conventional and molecular approaches. In A. Rakshit, H. B. Singh, A. K. Singh, U. S. Singh, & L. Fraceto (Eds.), New frontiers in stress management for durable agriculture (pp. 609–644). Springer Singapore. https://doi.org/10.1007/978-981-15-1322-0_30

  • Tang, N., Ma, S., Zong, W., Yang, N., Lv, Y., Yan, C., Guo, Z., Li, J., Li, X., Xiang, Y., Song, H., Xiao, J., Li, X., & Xiong, L. (2016). MODD mediates deactivation and degradation of OsbZIP46 to negatively regulate ABA signaling and drought resistance in rice. The Plant Cell, 28(9), 2161–2177. https://doi.org/10.1105/tpc.16.00171

  • Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S., & Gregory, P. D. (2010). Genome editing with engineered zinc finger nucleases. Nature Reviews Genetics, 11(9), 636–646. https://doi.org/10.1038/nrg2842

  • Voss-Fels, K. P., Stahl, A., & Hickey, L. T. (2019). Q&A: Modern crop breeding for future food security. BMC Biology, 17(1), 18. https://doi.org/10.1186/s12915-019-0638-4

  • Wang, F., Wang, C., Liu, P., Lei, C., Hao, W., Gao, Y., Liu, Y.-G., & Zhao, K. (2016). Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLOS One, 11(4), e0154027. https://doi.org/10.1371/journal.pone.0154027

  • Wang, W.-C., Lin, T.-C., Kieber, J., & Tsai, Y.-C. (2019). Response regulators 9 and 10 negatively regulate salinity tolerance in rice. Plant and Cell Physiology, 60(11), 2549–2563. https://doi.org/10.1093/pcp/pcz149

  • Xu, R., Li, J., Liu, X., Shan, T., Qin, R., & Wei, P. (2020). Development of plant prime-editing systems for precise genome editing. Plant Communications, 1(3), 100043. https://doi.org/https://doi.org/10.1016/j.xplc.2020.100043

  • Xu, Z., Xu, X., Gong, Q., Li, Z., Li, Y., Wang, S., Yang, Y., Ma, W., Liu, L., Zhu, B., Zou, L., & Chen, G. (2019). Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Molecular Plant, 12(11), 1434–1446. https://doi.org/10.1016/j.molp.2019.08.006

  • Yang, B., Sugio, A., & White, F. F. (2006). Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences, 103(27), 10503-10508. https://doi.org/10.1073/pnas.0604088103

  • Yue, E., Cao, H., & Liu, B. (2020). OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants, 9(10), 1337. https://doi.org/10.3390/plants9101337

  • Zafar, K., Khan, M. Z., Amin, I., Mukhtar, Z., Yasmin, S., Arif, M., Ejaz, K., & Mansoor, S. (2020). Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Frontiers in Plant Science, 11, 575. https://doi.org/10.3389/fpls.2020.00575

  • Zeng, X., Luo, Y., Vu, N. T. Q., Shen, S., Xia, K., & Zhang, M. (2020a). CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. oryzae without yield penalty. BMC Plant Biology, 20(1), 313. https://doi.org/10.1186/s12870-020-02524-y

  • Zeng, Y., Wen, J., Zhao, W., Wang, Q., & Huang, W. (2020b). Rational improvement of rice yield and cold tolerance by editing the three genes OsPIN5b, GS3, and OsMYB30 with the CRISPR–Cas9 system. Frontiers in Plant Science, 10, 1663. https://doi.org/10.3389/fpls.2019.01663

  • Zetsche, B., Heidenreich, M., Mohanraju, P., Fedorova, I., Kneppers, J., DeGennaro, E. M., Winblad, N., Choudhury, S. R., Abudayyeh, O. O., Gootenberg, J. S., Wu, W. Y., Scott, D. A., Severinov, K., van der Oost, J., & Zhang, F. (2017). Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array. Nature Biotechnology, 35(1), 31–34. https://doi.org/10.1038/nbt.3737

  • Zhang, A., Liu, Y., Wang, F., Li, T., Chen, Z., Kong, D., Bi, J., Zhang, F., Luo, X., Wang, J., Tang, J., Yu, X., Liu, G., & Luo, L. (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding, 39(3), 47. https://doi.org/10.1007/s11032-019-0954-y

  • Zhang, J., Zhang, H., Botella, J. R., & Zhu, J.-K. (2018). Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. Journal of Integrative Plant Biology, 60(5), 369–375. https://doi.org/10.1111/jipb.12620

  • Zhang, M., Wang, F., Li, S., Wang, Y., Bai, Y., & Xu, X. (2014). TALE: A tale of genome editing. Progress in Biophysics and Molecular Biology, 114(1), 25–32. https://doi.org/10.1016/j.pbiomolbio.2013.11.006

  • Zhang, Z., Li, J., Pan, Y., Li, J., Zhou, L., Shi, H., Zeng, Y., Guo, H., Yang, S., Zheng, W., Yu, J., Sun, X., Li, G., Ding, Y., Ma, L., Shen, S., Dai, L., Zhang, H., Yang, S., … Li, Z. (2017). Natural variation in CTB4a enhances rice adaptation to cold habitats. Nature Communications, 8(1), 14788. https://doi.org/10.1038/ncomms14788

  • Zhao, X., Sun, Z., Kang, W., Tao, Y., & Wu, H. (2020). A review of application of base editing for the treatment of inner ear disorders. Journal of Bio-X Research, 3(2), 66-71. https://doi.org/10.1097/JBR.0000000000000040

  • Zong, Y., Song, Q., Li, C., Jin, S., Zhang, D., Wang, Y., Qiu, J.-L., & Gao, C. (2018). Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nature Biotechnology, 36(10), 950–953. https://doi.org/10.1038/nbt.4261

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2235-2021

Download Full Article PDF

Share this article

Recent Articles