e-ISSN 2231-8542
ISSN 1511-3701
Nor Akma Ismail and Jian Zhao
Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 4, November 2022
DOI: https://doi.org/10.47836/pjtas.45.4.04
Keywords: Fibre, physicochemical, pretreatment, rice bran, steam explosion, ultrasound
Published on: 4 November 2022
Rice bran (RB) is an underutilised fibre source due to undesirable effects when incorporated into food products. Thus, this study aims to improve the physicochemical properties of RB by using ultrasound (US) and steam explosion (SE) treatments, making it more usable in food applications. The US treatment of unpurified RB resulted in inconsistent average particle size, water binding capacity (WBC), and swelling capacity (SC). The bulk density (BD) decreased while the oil binding capacity (OBC) increased as the amplitude and time increased. While the purified rice bran resulted in decreased average particle size and BD; and increased WBC, SC, and OBC. The surface microstructure of the unpurified and purified rice bran became more porous, and the colour of the RB was darkened proportionally to the intensity of US treatment. The average particle size of unpurified increased while the purified RB increased after steam explosion treatment regardless of the intensity. The SE treatment also decreased WBC and SC of unpurified and purified RB, but no changes were observed on the surface microstructure of both samples. The BD of unpurified RB decreased, while the BD of purified RB increased after SE treatment. The SE treatment also resulted in a decrease in the OBC of purified RB, but no significant (p > 0.05) improvement was observed in the OBC of unpurified RB. Ultrasound brought these changes in the two treatments more effectively than steam explosion. The alteration of physicochemical properties of RB by the US and SE treatment in this study will allow it to be more applicable in the formulation of food products.
Abdul-Hamid, A., & Luan, Y. S. (2000). Functional properties of dietary fibre prepared from defatted rice bran. Food Chemistry, 68(1), 15–19. https://doi.org/10.1016/S0308-8146(99)00145-4
Beck, S., Bouchard, J., & Berry, R. (2012). Dispersibility in water of dried nanocrystalline cellulose. Biomacromolecules, 13(5), 1486–1494. https://doi.org/10.1021/bm300191k
Blackwood, A. D., Salter, J., Dettmar, P. W., & Chaplin, M. F. (2000). Dietary fibre, physicochemical properties and their relationship to health. Journal of the Royal Society for the Promotion of Health, 120(4), 242–247. https://doi.org/10.1177/146642400012000412
Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research, 2011, 787532. https://doi.org/10.4061/2011/787532
Chaplin, M. F. (2003). Fibre and water binding. The Proceedings of the Nutrition Society, 62(1), 223–227. https://doi.org/10.1079/PNS2002203
Chater, P. I., Wilcox, M. D., Pearson, J. P., & Brownlee, I. A. (2015). The impact of dietary fibres on the physiological processes governing small intestinal digestive processes. Bioactive Carbohydrates and Dietary Fibre, 6(2), 117–132. https://doi.org/10.1016/j.bcdf.2015.09.002
Chau, C. F., Wang, Y. T., & Wen, Y. L. (2007). Different micronization methods significantly improve the functionality of carrot insoluble fibre. Food Chemistry, 100(4), 1402–1408. https://doi.org/10.1016/j.foodchem.2005.11.034
Chau, C. F., Wen, Y. L., & Wang, Y. T. (2006). Improvement of the functionality of a potential fruit insoluble fibre by micron technology. International Journal of Food Science and Technology, 41(9), 1054–1060. https://doi.org/10.1111/j.1365-2621.2006.01171.x
Chen, J., Gao, D., Yang, L., & Gao, Y. (2013). Effect of microfluidization process on the functional properties of insoluble dietary fiber. Food Research International, 54(2), 1821–1827. https://doi.org/10.1016/j.foodres.2013.09.025
Chinma, C. E., Ramakrishnan, Y., Ilowefah, M., Hanis-Syazwani, M., & Muhammad, K. (2015). Properties of cereal brans: A review. Cereal Chemistry, 92(1), 1–7. https://doi.org/10.1094/CCHEM-10-13-0221-RW
Daou, C., & Zhang, H. (2011). Physico-chemical properties and antioxidant activities of dietary fiber derived from defatted rice bran. Advance Journal of Food Science and Technology, 3(5), 339–347.
Daou, C., & Zhang, H. (2012). Study on functional properties of physically modified dietary fibres derived from defatted rice bran. Journal of Agricultural Science, 4(9), 85–97. https://doi.org/10.5539/jas.v4n9p85
Davidson, M. H., & McDonald, A. (1998). Fiber: Forms and functions. Nutrition Research, 18(4), 617–624. https://doi.org/10.1016/S0271-5317(98)00048-7
Ebringerová, A., & Hromádková, Z. (2010). An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Open Chemistry, 8(2), 243–257. https://doi.org/10.2478/s11532-010-0006-2
Elleuch, M., Bedigian, D., Roiseux, O., Besbes, S., Blecker, C., & Attia, H. (2011). Dietary fibre and fibre-rich by-products of food processing: Characterisation, technological functionality and commercial applications: A review. Food Chemistry, 124(2), 411–421. https://doi.org/10.1016/j.foodchem.2010.06.077
Ghosh, M. (2007). Review on recent trends in rice bran oil processing. Journal of the American Oil Chemists’ Society, 84(4), 315–324. https://doi.org/10.1007/s11746-007-1047-3
Gupta, P., & Premavalli, K. S. (2010). Effect of particle size reduction on physicochemical properties of ashgourd (Benincasa hispida) and radish (Raphanus sativus) fibres. International Journal of Food Sciences and Nutrition, 61(1), 18–28. https://doi.org/10.3109/09637480903222186
Hansawasdi, C., & Kurdi, P. (2017). Potential prebiotic oligosaccharide mixtures from acidic hydrolysis of rice bran and cassava pulp. Plant Foods for Human Nutrition, 72(4), 396–403. https://doi.org/10.1007/s11130-017-0636-z
Hou, F., Wu, Y., Kan, L., Li, Q., Xie, S., & Ouyang, J. (2016). Effects of ultrasound on the physicochemical properties and antioxidant activities of chestnut polysaccharide. International Journal of Food Engineering, 12(5), 439–449. https://doi.org/10.1515/ijfe-2015-0377
Hromádková, Z., Ebringerová, a., & Valachovič, P. (2002). Ultrasound-assisted extraction of water-soluble polysaccharides from the roots of valerian (Valeriana officinalis L.). Ultrasonics Sonochemistry, 9(1), 37–44. https://doi.org/10.1016/S1350-4177(01)00093-1
Hu, R., Zhang, M., Adhikari, B., & Liu, Y. (2015). Effect of homogenization and ultrasonication on the physical properties of insoluble wheat bran fibres. International Agrophysics, 29(4), 423–432. https://doi.org/10.1515/intag-2015-0048
Huang, C. C., Chen, Y. F., & Wang, C. C. R. (2010). Effects of micronization on the physico-chemical properties of peels of three root and tuber crops. Journal of the Science of Food and Agriculture, 90(5), 759–763. https://doi.org/10.1002/jsfa.3879
Jenkins, D. J. A., Wolever, T. M. S., Leeds, A. R., Gasull, M. A., Haisman, P., Dilawari, J., Goff, D. V, Metz, G. L., & Alberti, K. G. M. M. (1978). Dietary fibres , fibre analogues and glucose tolerance , importance of viscosity. British Medical Journal, 1(6124), 1392–1394. https://doi.org/10.1136/bmj.1.6124.1392
Jiang, S.-T., & Guo, N. (2016). The steam explosion pretreatment and enzymatic hydrolysis of wheat bran. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 38(2), 295–299. https://doi.org/10.1080/15567036.2012.744118
Kaur, A., Jassal, V., Thind, S. S., & Aggarwal, P. (2012). Rice bran oil an alternate bakery shortening. Journal of Food Science and Technology, 49(1), 110–114. https://doi.org/10.1007/s13197-011-0259-6
Kuan, Y.-H., & Liong, M. T. (2008). Chemical and physicochemical characterization of agrowaste fibrous materials and residues. Journal of Agricultural and Food Chemistry, 56(19), 9252–9257. https://doi.org/10.1021/jf802011j
Kurek, M. A., Wyrwisz, J., Karp, S., Brzeska, M., & Wierzbicka, A. (2017). Comparative analysis of dough rheology and quality of bread baked from fortified and high-in-fiber flours. Journal of Cereal Science, 74, 210–217. https://doi.org/10.1016/j.jcs.2017.02.011
Lebesi, D. M., & Tzia, C. (2012). Use of endoxylanase treated cereal brans for development of dietary fiber enriched cakes. Innovative Food Science and Emerging Technologies, 13, 207–214. https://doi.org/10.1016/j.ifset.2011.08.001
Liu, Y., Fan, C., Tian, M., Yang, Z., Liu, F., & Pan, S. (2017). Effect of drying methods on physicochemical properties and in vitro hypoglycemic effects of orange peel dietary fiber. Journal of Food Processing and Preservation, 41(6), e13292. https://doi.org/10.1111/jfpp.13292
Liu, Z., Zhang, M., & Wang, Y. (2016). Drying of restructured chips made from the old stalks of Asparagus officinalis: Impact of different drying methods. Journal of the Science of Food and Agriculture, 96(8), 2815–2824. https://doi.org/10.1002/jsfa.7449
Mora, Y. N., Contreras, J. C., Aguilar, C. N., Meléndez, P., Garza, I. D. La, & Rodríguez, R. (2013). Chemical composition and functional properties from different sources of dietary fiber. American Journal of Food and Nutrition, 1(3), 27–33. https://doi.org/10.12691/ajfn-1-3-2
Qi, J., Li, Y., Masamba, K. G., Shoemaker, C. F., Zhong, F., Majeed, H., & Ma, J. (2016). The effect of chemical treatment on the In vitro hypoglycemic properties of rice bran insoluble dietary fiber. Food Hydrocolloids, 52, 699–706. https://doi.org/10.1016/j.foodhyd.2015.08.008
Qi, J., Yokoyama, W., Masamba, K. G., Majeed, H., Zhong, F., & Li, Y. (2015). Structural and physico-chemical properties of insoluble rice bran fiber: Effect of acid–base induced modifications. RSC Advances, 5(97), 79915–79923. https://doi.org/10.1039/C5RA15408A
Rafe, A., Sadeghian, A., & Zohreh, S. (2017). Physicochemical, functional, and nutritional characteristics of stabilized rice bran form tarom cultivar. Food Science and Nutrition, 5(3), 407–414. https://doi.org/10.1002/fsn3.407
Raghavendra, S. N., Ramachandra Swamy, S. R., Rastogi, N. K., Raghavarao, K. S. M. S., Kumar, S., & Tharanathan, R. N. (2006). Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. Journal of Food Engineering, 72(3), 281–286. https://doi.org/10.1016/j.jfoodeng.2004.12.008
Ranasalva, N., & Visvanathan, R. (2014). Development of bread from fermented pearl millet flour. Journal of Food Processing and Technology, 5(5), 1000327. https://doi.org/10.4172/2157-7110.1000327
Robertson, J. A., Dysseler, Francois D. de Monredon, P., Guillon, F., Amado, R., & Thibault, J.-F. (2000). Hydration properties of dietary fibre and resistant starch: A European collaborative study. LWT - Food Science and Technology, 33(2), 72–79. https://doi.org/10.1006/FSTL.1999.0595
Rosell, C. M. (2011). The science of doughs and bread quality. Flour and Breads and their Fortification in Health and Disease Prevention, 2011, 3-14. https://doi.org/10.1016/B978-0-12-380886-8.10001-7
Rosell, C. M., & Santos, E. (2010). Impact of fibers on physical characteristics of fresh and staled bake off bread. Journal of Food Engineering, 98(2), 273–281. https://doi.org/10.1016/j.jfoodeng.2010.01.008
Rosell, C. M., Santos, E., & Collar, C. (2010). Physical characterization of fiber-enriched bread doughs by dual mixing and temperature constraint using the Mixolab®. European Food Research and Technology, 231, 535–544. https://doi.org/10.1007/s00217-010-1310-y
Sabanis, D., Lebesi, D., & Tzia, C. (2009). Effect of dietary fibre enrichment on selected properties of gluten-free bread. LWT - Food Science and Technology, 42(8), 1380–1389. https://doi.org/10.1016/j.lwt.2009.03.010
Sairam, S., Gopala Krishna, A. G., & Urooj, A. (2011). Physico-chemical characteristics of defatted rice bran and its utilization in a bakery product. Journal of Food Science and Technology, 48(4), 478–483. https://doi.org/10.1007/s13197-011-0262-y
Saunders, R. M. (1985). Rice bran: Composition and potential food uses. Food Reviews International, 1(3), 465-495. https://doi.org/10.1080/87559128509540780
Sharif, M. K., Butt, M. S., Anjum, F. M., & Khan, S. H. (2014). Rice bran: A novel functional ingredient. Critical Reviews in Food Science and Nutrition, 54(6), 807–816. https://doi.org/10.1080/10408398.2011.608586
Shen, M., Ge, Y., Kang, Z., Quan, Z., Wang, J., Xiao, J., Wang, W., & Cao, L. (2019). Yield and physicochemical properties of soluble dietary fiber extracted from untreated and steam explosion-treated black soybean hull. Journal of Chemistry, 2019, 9736479. https://doi.org/10.1155/2019/9736479
Stephen, A. M., & Cummings, J. H. (1979). Water-holding by dietary fiber in vitro and its relationship to fecal bulking in man. Gut, 20(8), 722-729. https://doi.org/10.1136/gut.20.8.722
Sumari, S., Roesyadi, A., & Sumarno, S. (2013). Effects of ultrasound on the morphology, particle size, crystallinity, and crystallite size of cellulose. Scientific Study and Research: Chemistry and Chemical Engineering, Biotechnology, Food Industry, 14(4), 229–239.
Takahashi, T., Furuichi, Y., Mizuno, T., Kato, M., Tabara, A., Kawada, Y., Hirano, Y., Kubo, K. Y., Onozukac, M., & Kurita, O. (2009). Water-holding capacity of insoluble fibre decreases free water and elevates digesta viscosity in the rat. Journal of the Science of Food and Agriculture, 89(2), 245–250. https://doi.org/10.1002/jsfa.3433
Ulbrich, M., & Flöter, E. (2014). Impact of high pressure homogenization modification of a cellulose based fiber product on water binding properties. Food Hydrocolloids, 41, 281–289. https://doi.org/10.1016/j.foodhyd.2014.04.020
Uraipong, C., & Zhao, J. (2016). Rice bran protein hydrolysates exhibit strong in vitro α-amylase, β-glucosidase and ACE-inhibition activities. Journal of the Science of Food and Agriculture, 96(4), 1101–1110. https://doi.org/10.1002/jsfa.7182
Walter, T. (2014). Degradation of gluten in wheat bran and bread drink by means of a proline-specific peptidase. Journal of Nutrition and Food Sciences, 4(5), 1000293. https://doi.org/10.4172/2155-9600.1000293
Wang, B., Li, D., Wang, L. J., Chiu, Y. L., Chen, X. D., & Mao, Z. H. (2008). Effect of high-pressure homogenization on the structure and thermal properties of maize starch. Journal of Food Engineering, 87(3), 436–444. https://doi.org/10.1016/j.jfoodeng.2007.12.027
Wang, T., Raddatz, J., & Chen, G. (2013). Effects of microfluidization on antioxidant properties of wheat bran. Journal of Cereal Science, 58(3), 380–386. https://doi.org/10.1016/j.jcs.2013.07.010
Wang, T., Sun, X., Raddatz, J., & Chen, G. (2013). Effects of microfluidization on microstructure and physicochemical properties of corn bran. Journal of Cereal Science, 58(2), 355–361. https://doi.org/10.1016/j.jcs.2013.07.003
Wang, T., Sun, X., Zhou, Z., & Chen, G. (2012). Effects of microfluidization process on physicochemical properties of wheat bran. Food Research International, 48(2), 742–747. https://doi.org/10.1016/j.foodres.2012.06.015
Wang, W., Zhang, B., Jiang, S., Bai, H., & Zhang, S. (2019). Use of CeO2 nanoparticles to enhance UV-shielding of transparent regenerated cellulose films. Polymers, 11(3), 458. https://doi.org/10.3390/polym11030458
Wang, W., Ma, X., Jiang, P., Hu, L., Zhi, Z., Chen, J., Ding, T., Ye, X., & Liu, D. (2016). Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids, 61, 730–739. https://doi.org/10.1016/j.foodhyd.2016.06.019
Wen, Y., Niu, M., Zhang, B., Zhao, S., & Xiong, S. (2017). Structural characteristics and functional properties of rice bran dietary fiber modified by enzymatic and enzyme-micronization treatments. LWT - Food Science and Technology, 75, 344–351. https://doi.org/10.1016/j.lwt.2016.09.012
Ying, Z., Han, X., & Li, J. (2011). Ultrasound-assisted extraction of polysaccharides from mulberry leaves. Food Chemistry, 127(3), 1273–1279. https://doi.org/10.1016/j.foodchem.2011.01.083
Yu, Z. Y., Jiang, S. W., Cao, X. M., Jiang, S. T., & Pan, L. J. (2014). Effect of high pressure homogenization (HPH) on the physical properties of taro (Colocasia esculenta (L). Schott) pulp. Journal of Food Engineering, 177, 1–8. https://doi.org/10.1016/j.jfoodeng.2015.10.042
ISSN 1511-3701
e-ISSN 2231-8542