Home / Regular Issue / JTAS Vol. 45 (4) Nov. 2022 / JTAS-2476-2022

 

Evaluation of Carbon Stock, Nitrogen, and Phosphorus Contents in Forest Soil and Litter at Bintulu’s Acacia mangium Chronosequence Age Stand Plantation, Sarawak, Malaysia

Nurul Asyiqin Abu Bakar, Amirul Anwar Shamsor, Kian Huat Ong and Roland Jui Heng Kueh

Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 4, November 2022

DOI: https://doi.org/10.47836/pjtas.45.4.13

Keywords: Acacia mangium, biomass, carbon pool, soil N, soil P

Published on: 4 November 2022

Acacia mangium is the major species used in the forest plantation industry due to its fast-growing feature. However, there is still a lack of research on the nutrient concentration, specifically nitrogen (N) and phosphorus (P), as well as carbon content in Malaysia’s forest plantations. Hence, this study aimed to assess the total N and P concentrations in the soil and forest litter. Carbon content in different ages (Year 2, Year 4, and Year 9) of A. mangium plantation (together with a natural forest as a comparison) was also determined. This study was conducted in a Licensed Planted Forest, Bintulu, Sarawak, Malaysia. The natural forest was a control variable in this study. The Kjeldahl method was used to determine the total N. In contrast, dry ashing and double acid (Mehlich-1) methods were used to determine the total P in forest litter and available P in forest soil. The allometric biomass equations were used to estimate the carbon content. Total N in forest litter and forest soil was similar in all treatments. Total P in the Year 4 stand was significantly higher than in the Year 2 stand, yet, no differences were observed when compared with the control. Whereas soil available P showed no significant difference among all treatments. Acacia mangium stands recorded significantly lower total carbon content compared to the control. Old plantation stands contained much more total carbon stock than the younger stands. Also, deadwood is important in determining total carbon stock when it can account for almost 59% of above-ground biomass (AGB) carbon stock. This study revealed that forest plantations could function well in providing an adequate supply of available nutrients as well as have a potential role in carbon sink.

  • Adam, N. S., & Jusoh, I. (2018). Allometric model for predicting aboveground biomass and carbon stock of Acacia plantations in Sarawak, Malaysia. BioResources, 13(4), 7381–7394. https://doi.org/10.15376/biores.13.4.7381-7394

  • Amatangelo, K. L., & Vitousek, P. M. (2009). Contrasting predictors of fern versus angiosperm decomposition in a common garden. Biotropica, 41(2), 154–161. https://doi.org/10.1111/j.1744-7429.2008.00470.x

  • Arai, S., Ishizuka, S., Ohta, S., Ansori, S., Tokuchi, N., Tanaka, N., & Hardjono, A. (2008). Potential N2O emissions from leguminous tree plantation soils in the humid tropics. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007GB002965

  • Baldwin, J. P. (1975). A quantitative analysis of the factors affecting plant nutrient uptake from some soils. European Journal of Soil Science, 26(3), 195–206. https://doi.org/10.1111/j.1365-2389.1975.tb01943.x

  • Batista, R. O., Furtini Neto, A. E., Deccetti, S. F. C., & Viana, C. S. (2016). Root morphology and nutrient uptake kinetics by Australian cedar clones. Revisata Caatinga, 29, 153–162. https://doi.org/10.1590/1983-21252016v29n118rc

  • Bini, D., dos Santos, C. A., Bernal, L. P. T., Andrade, G., & Nogueira, M. A. (2014). Identifying indicators of C and N cycling in a clayey Ultisol under different tillage and uses in winter. Applied Soil Ecology, 76, 95–101. https://doi.org/10.1016/j.apsoil.2013.12.015

  • Binkley, D. (1992). Mixtures nitrogen-fixing and non-nitrogen-fixing tree species. In M. G. R. Cannell, D. C. Malcolm, & P. A. Robertson (Eds.), The ecology of mixed-species stands of trees (pp. 99–123). Blackwell Scientific.

  • Bot, A., & Benites, J. (2005). The importance of soil organic matter: Key to drought-resistant soil and sustained food production. Food and Agriculture Organization.

  • Britto, D. T., & Kronzucker, H. J. (2013). Ecological significance and complexity of N-source preference in plants. Annals of Botany, 112(6), 957–963. https://doi.org/10.1093/aob/mct157

  • Brundrett, M. C., & Tedersoo, L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist, 220(4), 1108–1115. https://doi.org/10.1111/nph.14976

  • Butler, R. A. (2019, December 17). Tropical forests’ lost decade: The 2010s. Mongabay. https://news.mongabay.com/2019/12/tropical-forests-lost-decade-the-2010s/

  • Chambers, J. Q., dos Santos, J., Ribeiro, R., & Higuchi, N. (2001). Tree damage, allometric relationships, and aboveground net primary production in a tropical forest. Forest Ecology and Management, 152(1–3), 73–84. https://doi.org/10.1016/S0378-1127(00)00591-0

  • Chatzistathis, T., & Therios, I. (2013). How soil nutrient availability influences plant biomass and how biomass stimulation alleviates heavy metal toxicity in soils: The cases of nutrient use efficient genotypes and phytoremediators, respectively. In M. D. Matovic (Ed.), Biomass now: Cultivation and utilization (pp. 427–448). IntechOpen. https://doi.org/10.5772/53594

  • Chauhan, D. S., Dhanai, C. S., Singh, B., Chauhan, S., Todaria, N. P., & Khalid, M. A. (2008). Regeneration and tree diversity in natural and planted forests in a Terai - Bhabhar forest in Katarniaghat Wildlife Sanctuary, India. Tropical Ecology, 49(1), 53–67.

  • Chen, M., Arato, M., Borghi, L., Nouri, E., & Reinhardt, D. (2018). Beneficial services of arbuscular mycorrhizal fungi – From ecology to application. Frontiers in Plant Science, 9, 1270. https://doi.org/10.3389/fpls.2018.01270

  • Chiu, C. H., & Paszkowski, U. (2019). Mechanisms and impact of symbiotic phosphate acquisition. Cold Spring Harbor Perspectives in Biology, 11(6), a034603. https://doi.org/10.1101/cshperspect.a034603

  • Chua, A. Y. Q. (2018). Exploring growth enhancing rhizospheric microorganisms for silviculture of Neolamarckia cadamba [Master’s thesis, Swinburne University of Technology]. Swinburne Research Bank. https://researchbank.swinburne.edu.au/items/799a7354-2192-462d-94cc-2c031d9f1855/1/

  • Cissé, M., Traoré, S., & Bationo, B. A. (2021). Decomposition and nutrient release from the mixed leaf litter of three agroforestry species in the Sudanian zone of West Africa. SN Applied Science, 3, 273. https://doi.org/10.1007/s42452-021-04242-y

  • Cossalter, C., & Pye-Smith, C. (2003). Fast-wood forestry: Myths and realities. Center for International Forestry Research. https://doi.org/10.17528/cifor/001257

  • Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe. (Eds). (2006). 2006 IPCC guidelines for National Greenhouse Gas Inventories: Agriculture, forestry and other land use (Vol. 4). IGES. https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4

  • Ferrol, N., Azcón-Aguilar, C., Bago, B., Franken, P., Gollote, A., González-Guerrero, M., Harrier, L. A., Lanfranco, L., Tuinen, D., & Gianinazzi-Pearson, V. (2004). Genomics of arbuscular mycorrhizal fungi. In D. K. Arora & G. G. Khachatourians (Eds.), Applied mycology and biotechnology (Vol. 4, pp. 379–403). Elsevier. https://doi.org/10.1016/S1874-5334(04)80019-4

  • Fitter, A. H. (1987). An architectural approach to the comparative ecology of plant root systems. New Phytologist, 106(s1), 61–77. https://doi.org/10.1111/j.1469-8137.1987.tb04683.x

  • Fitter, A. H., Stickland, T. R., Harvey, M. L., & Wilson, G. W. (1991). Architectural analysis of plant root systems 1. Architectural correlates of exploitation efficiency. New Phytologist, 118(3), 375–382. https://doi.org/10.1111/j.1469-8137.1991.TB00018.X

  • Food and Agriculture Organization of the United Nations. (2020a). Global Forest Resources Assessment 2020: Main report. FAO. https://doi.org/10.4060/ca9825en

  • Food and Agriculture Organization of the United Nations. (2020b). Global Forest Resources Assessment 2020 Malaysia – Report. FAO. https://www.fao.org/3/cb0033en/cb0033en.pdf

  • Ge, X., Zeng, L., Xiao, W., Huang, Z., Geng, X., & Tan, B. (2013). Effect of litter substrate quality and soil nutrients on forest litter decomposition: A review. Acta Ecologica Sinica, 33(2), 102–108. https://doi.org/10.1016/j.chnaes.2013.01.006

  • Germon, A., Guerrini, I. A., Bordron, B., Bouillet, J. P., Nouvellon, Y., de Moraes Gonçalves, J. L., Jourdan, C., Paula, R. R., & Laclau, J. P. (2018). Consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by fine-roots down to a depth of 17 m. Plant and Soil, 424, 203–220. https://doi.org/10.1007/s11104-017-3428-1

  • Giweta, M. (2020). Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: A review. Journal of Ecology and Environment, 44, 11. https://doi.org/10.1186/s41610-020-0151-2

  • Halmi, M. F. A., & Simarani, K. (2021). Diazotrophic population and soil nitrogen dynamics following coapplication of biochar with inorganic fertilizer in the humid tropics. Bragantia, 80, e3521. https://doi.org/10.1590/1678-4499.20210017

  • Halomoan, S. S. T., Wawan, & Adiwirman. (2015). Effect of fertilization on the growth and biomass of Acacia mangium and Eucalyptus hybrid (E. grandis × E. pellita). Journal of Tropical Soils, 20(3), 157–166.

  • Hammond, J. P., Broadley, M. R., & White, P. J. (2004). Genetic responses to phosphorus deficiency. Annals of Botany, 94(3), 323–332. https://doi.org/10.1093/aob/mch156

  • Hardiyanto, E. B., & Wicaksono, A. (2008). Inter-rotation site management, stand growth and soil properties in acacia mangium plantations in south Sumatra, Indonesia. In E. K. Sadanandan Nambiar (Ed.), Site management and productivity in tropical plantation forests (pp. 107–122). Center for International Forestry Research. https://doi.org/10.17528/cifor/002517

  • Herdiyanti, I., & Sulistyawati, E. (2009, August 3–5). Carbon stocks in Acacia mangium Willd. stands of different ages [Paper presentation]. The 3rd Regional Conference on Natural Resources in the Tropics, Kuching, Malaysia. https://multisite.itb.ac.id/wp-content/uploads/sites/56/2018/01/carbon-stocks-in-acacia-mangnium-willd-stand-of-diffrent-ages.pdf

  • Horneck, D. A., & Miller, R. O. (1998). Determination of total nitrogen in plant tissue. In Y. P. Karla (Ed.), Handbook of reference methods for plant analysis (pp. 75–83). CRC Press.

  • Inagaki, M., & Tange, T. (2014). Nutrient accumulation in aboveground biomass of planted tropical trees: A meta-analysis. Soil Science and Plant Nutrition, 60(4), 598–608. https://doi.org/10.1080/00380768.2014.929025

  • Inagaki, M., & Titin, J. (2009). Evaluation of site environments for agroforestry production. In T. Gotoh & Y. Yakota (Eds.), Development of agroforestry technology for the rehabilitation of tropical forests (pp. 26 – 31). Japan International Research Center for Agricultural Sciences.

  • Isidra-Arellano, M. C., Delaux, P. M., & Valdés-López, O. (2021). The phosphate starvation response system: Its role in the regulation of plant–microbe interactions. Plant and Cell Physiology, 62(3), 392–400. https://doi.org/10.1093/pcp/pcab016

  • Johnson, D., Cole, D. W., & Gessel, S. P. (1975). Processes of nutrient transfer in a tropical rain forest. Biotropica, 7(3), 208–215. https://doi.org/10.2307/2989624

  • Jusoh, I., Suteh, J. K., & Adam, N. S. (2017). Growth and yield of Acacia mangium based on permanent sampling plots in a plantation. Transactions on Science and Technology, 4(4), 513–518.

  • Karandashov, V., & Bucher, M. (2005). Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 10(1), 22–29. https://doi.org/10.1016/j.tplants.2004.12.003

  • Kenzo, T., Furutani, R., Hattori, D., Kendawang, J. J., Tanaka, S., Sakurai, K., & Ninomiya, I. (2009). Allometric equations for accurate estimation of above-ground biomass in logged-over tropical rainforests in Sarawak, Malaysia. Journal of Forest Research, 14(6), 365–372. https://doi.org/10.1007/s10310-009-0149-1

  • Kenzo, T., Furutani, R., Hattori, D., Tanaka, S., Sakurai, K., Ninomiya, I., & Kendawang, J. J. (2015). Aboveground and belowground biomass in logged-over tropical rain forests under different soil conditions in Borneo. Journal of Forest Research, 20(1), 197–205. https://doi.org/10.1007/s10310-014-0465-y

  • Koutika, L. S., & Richardson, D. M. (2019). Acacia mangium Willd: Benefits and threats associated with its increasing use around the world. Forest Ecosystems, 6, 2. https://doi.org/10.1186/s40663-019-0159-1

  • Koutika, L. S., Cafiero, L., Bevivino, A., & Merino, A. (2020). Organic matter quality of forest floor as a driver of C and P dynamics in acacia and eucalypt plantations established on a Ferralic Arenosols, Congo. Forest Ecosystems, 7, 40. https://doi.org/10.1186/s40663-020-00249-w

  • Kueh, J. H. R., Majid, N. M. A., Seca, G., & Ahmed, O. H. (2012). Estimation of total above ground biomass at selected age stands of a rehabilitated forest. Journal of Tropical Biology and Conservation, 9(2), 164–175. https://doi.org/10.51200/jtbc.v9i2.241

  • Kueh, J. H. R., Majid, N. M. A., Seca, G., & Ahmed, O. H. (2013). Above ground biomass-carbon partitioning, storage and sequestration in a rehabilitated forest, Bintulu, Sarawak, Malaysia. Sains Malaysiana, 42(8), 1041–1050.

  • Laclau, J.-L., da Silva, E. A., Lambais, G. R., Bernoux, M., le Maire, G., Stape, J. L., Bouillet, J-P., de Moraes Gonçalves, J. L., Jourdan, C., & Nouvellon, Y. (2013). Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations. Frontiers in Plant Science, 4, 243. https://doi.org/10.3389/fpls.2013.00243

  • Lambert, M. J. (1976). Preparation of plant materials for estimating a wide range of elements. Forestry Commission of New South Wales. https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/390081/Preparation-of-Plant-Material-for-Estimating-a-Wide-Range-of-Elements.pdf

  • Le Roux, M. R., Khan, S., & Valentine, A. J. (2008). Organic acid accumulation may inhibit N2 fixation in phosphorus-stressed lupin nodules. New Phytologist, 177(4), 956–964. https://doi.org/10.1111/j.1469-8137.2007.02305.x

  • Lee, K. L., Ong, K. H., King, P. J. H., Chubo, J. K., & Su, D. S. A. (2015). Stand productivity, carbon content, and soil nutrients in different stand ages of Acacia mangium in Sarawak, Malaysia. Turkish Journal of Agriculture and Forestry, 39(1), 18. https://doi.org/10.3906/tar-1404-20

  • Lee, S. S. (2018). Observations on the successes and failures of acacia plantations in Sabah and Sarawak and the way forward. Journal of Tropical Forest Science, 30(5), 468–475. https://doi.org/10.26525/jtfs2018.30.5.468475

  • Leghari, S. J., Wahocho, N. A., Laghari, G. M., Hafeez Laghari, A., Mustafa Bhabhan, G., Hussain Talpur, K., Bhutto, T. A., Wahocho, S. A., & Lashari, A. A. (2016). Role of nitrogen for plant growth and development: A review. Advances in Environmental Biology, 10(9), 209–219.

  • Levan, C., Buimanh, H., Oluwasanmi Tope, B.-O., Xu, X., Nguyenminh, T., Lak, C., Nebiyou, L., Wang, J., & Buivan, T. (2020). Biomass and carbon storage in an age-sequence of Acacia mangium plantation forests in Southeastern region, Vietnam. Forest Systems, 29(2), e009. https://doi.org/10.5424/fs/2020292-16685

  • Li, H., Yang, Y., Zhang, H., Chu, S., Zhang, X., Yin, D., Yu, D., & Zhang, D. (2016). A genetic relationship between phosphorus efficiency and photosynthetic traits in soybean as revealed by QTL analysis using a high-density genetic map. Frontiers in Plant Science, 7, 924. https://doi.org/10.3389/fpls.2016.00924

  • Li, Y., Tian, D., Yang, H., & Niu, S. (2018). Size‐dependent nutrient limitation of tree growth from subtropical to cold temperate forests. Functional Ecology, 32(1), 95–105. https://doi.org/10.1111/1365-2435.12975

  • Liao, C., Luo, Y., Fang, C., Chen, J., & Li, B. (2012). The effects of plantation practice on soil properties based on the comparison between natural and planted forests: A meta‐analysis. Global Ecology and Biogeography, 21(3), 318–327. https://doi.org/10.1111/j.1466-8238.2011.00690.x

  • Lim, M. T. (1986). Biomass and productivity of 4.5 year-old Acacia mangium in Sarawak. Pertanika, 9(1), 81–87.

  • Lim, M. T., & Hamzah, M. B. (1985). Biomass accumulation in a naturally regenerating lowland secondary forest and an Acacia mangium stand in Sarawak. Pertanika, 8(2), 237–242.

  • Lynch, J., Läuchli, A., & Epstein, E. (1991). Vegetative growth of the common bean in response to phosphorus nutrition. Crop Science, 31(2), 380–387. https://doi.org/10.2135/cropsci1991.0011183x003100020031x

  • Mani, S., & Cao, M. (2019). Nitrogen and phosphorus concentration in leaf litter and soil in Xishuangbanna tropical forests: Does precipitation limitation matter?. Forests, 10(3), 242. https://doi.org/10.3390/f10030242

  • Maro, R. S., Chamshama, S. A. O., Nsolomo, V. R., & Maliondo, S. M. (1991). Soil chemical characteristics in a natural forest and a Cupressus lusitanica plantation at West Kilimanjaro, Northern Tanzania. Journal of Tropical Forest Science, 5(4), 465–472.

  • Matangaran, J. R., Indra Putra, E., Diatin, I., Mujahid, M., & Adlan, Q. (2019). Residual stand damage from selective logging of tropical forests: A comparative case study in central Kalimantan and West Sumatra, Indonesia. Global Ecology and Conservation, 19, e00688. https://doi.org/10.1016/j.gecco.2019.e00688

  • Mehlich, A. (1953). Determination of P, Ca, Mg, K, Na and NH4. https://www.ncagr.gov/agronomi/pdffiles/mehlich53.pdf

  • Mitran, T., Meena, R. S., Lal, R., Layek, J., Kumar, S., & Datta, R. (2018). Role of soil phosphorus on legume production. In R. Meena, A. Das, G. Yadav, & R. Lal (Eds.), Legumes for soil health and sustainable management (pp. 487–510). Springer. https://doi.org/10.1007/978-981-13-0253-4_15

  • Morgan, J. B., & Connolly, E. L. (2013). Plant-soil interactions: Nutrient uptake. Nature Education Knowledge, 4(8), 2.

  • Näsholm, T., Kielland, K., & Ganeteg, U. (2008). Uptake of organic nitrogen by plants. New Phytologists, 182(1), 31–48. https://doi.org/10.1111/j.1469-8137.2008.02751.x

  • Nazeri, A., Jusoh, I., & Wasli, M. E. (2021). Growth of Acacia mangium at different stand ages and soil physicochemical properties in Sarawak, Malaysia. Pertanika Journal of Tropical Agricultural Science, 44(4), 773–793. https://doi.org/10.47836/pjtas.44.4.05

  • Nazeri, A., Jusoh, I., & Wasli, M. E. (2022). Soil physicochemical properties in different stand ages and soil depths of Acacia mangium plantation. Journal of Sustainability Science and Management, 17(3), 173–187. https://doi.org/10.46754/jssm.2022.03.014

  • Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, & M. E. Sumner (Eds.), Methods of soil analysis: Part 3 Chemical methods (pp. 961–1010). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. https://doi.org/10.2136/sssabookser5.3.c34

  • Ngaba, M. J. Y., Hu, Y. L., Bol, R., Ma, X. Q., Jin, S. F., & Mgelwa, A. S. (2019). Effects of land use change from natural forest to plantation on C, N and natural abundance of 13C and 15N along a climate gradient in eastern China. Scientific Reports, 9, 16516. https://doi.org/10.1038/s41598-019-52959-z

  • Niiyama, K., Kajimoto, T., Matsuura, Y., Yamashita, T., Matsuo, N., Yashiro, Y., Ripin, A., Kassim, A. R., & Noor, N. S. (2010). Estimation of root biomass based on excavation of individual root systems in a primary dipterocarp forest in Pasoh Forest Reserve, Peninsular Malaysia. Journal of Tropical Ecology, 26(3), 271–284. https://doi.org/10.1017/S0266467410000040

  • Othman, R., Ramya, R., Hassan, N. M., & Kamoona, S. (2020). Qualitative and quantitative phenolic compounds analysis of Dicranopteris linearis different fractional polarities leaves extract. Journal of Pharmacy and Nutrition Sciences, 10(1), 7–12. https://doi.org/10.29169/1927-5951.2020.10.01.2

  • Palma, R. A. (2014). Determination of aboveground carbon density of mangium (Acacia mangium Willd.) using biomass expansion factor. Mindanao Journal of Science and Technology, 12(1), 39–50.

  • Paudel, E., Dossa, G. G. O., de Blécourt, M., Beckschäfer, P., Xu, J., & Harrison, R. D. (2015). Quantifying the factors affecting leaf litter decomposition across a tropical forest disturbance gradient. Ecosphere, 6(12), 1–20. https://doi.org/10.1890/ES15-00112.1

  • Pfeifer, M., Lefebvre, V., Turner, E., Cusack, J., Khoo, M. S., Chey, V. K., Peni, M., & Ewers, R. M. (2015). Deadwood biomass: An underestimated carbon stock in degraded tropical forests?. Environmental Research Letters, 10(4), 044019. https://doi.org/10.1088/1748-9326/10/4/044019

  • Pierret, A., & Moran, C. J. (2011). Plant roots and soil structure. In J. Gliński, J. Horabik, & J. Lipiec (Eds.), Encyclopedia of earth sciences series: Encyclopedia of agrophysics. Springer. https://doi.org/10.1007/978-90-481-3585-1_121

  • Power, A. G. (2010). Ecosystem services and agriculture: Tradeoffs and synergies. Philosophical Transactions of the Royal Society B, 365(1554), 2959–2971. https://doi.org/10.1098/rstb.2010.0143

  • Prasad, R., & Chakraborty, D. (2019, April 19). Phosphorus basics: Understanding phosphorus forms and their cycling in the soil. Alabama Cooperative Extension System. https://www.aces.edu/blog/topics/crop-production/understanding-phosphorus-forms-and-their-cycling-in-the-soil/

  • Radin, J. W., & Eidenbock, M. P. (1984). Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiology, 75(2), 372–377. https://doi.org/10.1104/pp.75.2.372

  • Ratnasingam, J., Thiruselvam, K., & Ioras, F. (2016). The potential of rubber and acacia plantations for forest carbon stocks in Malaysia. International Forestry Review, 18(1), 68–77. https://doi.org/10.1505/146554816818206140

  • Rice, A. H., Pyle, E. H., Saleska, S. R., Hutyra, L., Palace, M., Keller, M., De Camargo, P. B., Portilho, K., Marques, D. F., & Wofsy, S. C. (2004). Carbon balance and vegetation dynamics in an old-growth Amazonian forest. Ecological Applications, 14(sp4), 55–71. https://doi.org/10.1890/02-6006

  • Schulte, E. E., & Hopkins, B. G. (1996). Estimation of organic matter by weight loss-on-ignition. In F. R. Magdoff, M. A. Tabatabai, & E. A. Hanlon Jr. (Eds.), Soil organic matter: Analysis and interpretation (Vol. 46, pp. 21–31). American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. https://doi.org/10.2136/sssaspecpub46.c3

  • Shono, K., Davies, S. J., & Kheng, C. Y. (2006). Regeneration of native plant species in restored forests on degraded lands in Singapore. Forest Ecology and Management, 237(1–3), 574–582. https://doi.org/10.1016/j.foreco.2006.10.003

  • Siregar, S. T. H., Hardiyanto, E. B., & Gales, K. (1999). Acacia mangium plantations in PT Musi Hutan Persada, South Sumatera, Indonesia. In E. K. S. Nambiar, C. Cossalter, & A. Tiarks (Eds.), Site management and productivity in tropical plantation forests (pp. 39–44). Center for International Forestry Research. https://www.cifor.org/publications/pdf_files/Books/StMgnt.pdf

  • Smith, S. E., & Read, D. J. (2008). Mycorrhizal symbiosis (3rd ed.). Academic Press. https://doi.org/10.1016/B978-0-12-370526-6.X5001-6

  • Sukganah, A., Wickneswari, R., & Choong, C. Y. (2005). Full length cDNA for cinnamoyl-CoA reductas (CCR) and caffeic acid O-methyltransferase (COMT) in Acacia mangium Willd. × Acacia auriculiformis Cunn. ex Benth. hybrid. In Proceedings from a Seminar on Current Updates on Acacia Genomics and Breeding: Acacia Research in Malaysia (pp. 11–15). Penerbit Universiti Kebangsaan Malaysia. http://www.ukm.my/acacia/files/AcaciaSeminarProceedings.pdf

  • Tamm, C. O. (1995). Towards an understanding of the relations between tree nutrition, nutrient cycling and environment. Plant and Soil, 168, 21–27. https://doi.org/10.1007/BF00029310

  • Tanaka, S., Kano, S., Lat, J., Mohd Effendi, W., Tan, N. P., Arifin, A., Sakurai, K., & Kendawang, J. J. (2015). Effects of Acacia mangium on morphological and physicochemical properties of soil. Journal of Tropical Forest Science, 27(3), 357–368.

  • Temesgen, H., Affleck, D., Poudel, K., Gray, A., & Sessions, J. (2015). A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scandinavian Journal of Forest Research, 30(4), 326–335. https://doi.org/10.1080/02827581.2015.1012114

  • Thanh, T. X., & Thu, D. H. (2015). Study on carbon accumulation capacity of the Acacia mangium plantation in Ngoc Thanh commune, Phuc Yen district, Vinh Phuc province, Vietnam. In Proceeding of the 6th National Scientific Conference on Ecological and Biological Resources (Vol. 6, pp. 1660–1666). Institute of Ecological and Biological Resources Vietnam. http://www.iebr.ac.vn/database/HNTQ6/1660.pdf

  • Vashum, K. T., & Jayakumar, S. (2012). Methods to estimate above-ground biomass and carbon stock in natural forests - A review. Journal of Ecosystem and Ecography, 2, 116. https://doi.org/10.4172/2157-7625.1000116

  • Wang, L., & Macko, S. A. (2011). Constrained preferences in nitrogen uptake across plant species and environments. Plant, Cell and Environment, 34(3), 525–534. https://doi.org/10.1111/j.1365-3040.2010.02260.x

  • Xue, Z., & An, S. (2018). Changes in soil organic carbon and total nitrogen at a small watershed scale as the result of land use conversion on the Loess Plateau. Sustainability, 10(12), 4757. https://doi.org/10.3390/su10124757

  • Yamashita, N., Ohta, S., & Hardjono, A. (2008). Soil changes induced by Acacia mangium plantation establishment: Comparison with secondary forest and Imperata cylindrica grassland soils in South Sumatra, Indonesia. Forest Ecology and Management, 254(2), 362–370. https://doi.org/10.1016/j.foreco.2007.08.012

  • Yang, Y. S., Guo, J. F., Chen, G. S., Xie, J. S., Gao, R., Li, Z., & Jin, Z. (2005). Litter production, seasonal pattern and nutrient return in seven natural forests compared with a plantation in southern China. Forestry, 78(4), 403–415. https://doi.org/10.1093/forestry/cpi044

  • Zhu, X. C., Song, F. B., & Xu, H. W. (2010). Arbuscular mycorrhizae improves low temperature stress in maize via alterations in host water status and photosynthesis. Plant and Soil, 331, 129–137. https://doi.org/10.1007/s11104-009-0239-z

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2476-2022

Download Full Article PDF

Share this article

Recent Articles