e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 47 (1) Feb. 2024 / JTAS-2841-2023


Hexanal Treatment for Improving the Shelf-life and Quality of Fruits: A Review

Aidil Hakim Azhar, Mohd Sabri Pak Dek, Nurul Shazini Ramli, Yaya Rukayadi, Ahmed Mediani and Nurmahani Mohd Maidin

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 1, February 2024


Keywords: Antimicrobial, biosafety, hexanal, phospholipase D, post-harvest, ripening, shelf-life

Published on: 23 Febuary 2024

Fruits are rich sources of bioactive compounds such as lycopene, tannins, β-carotene, resveratrol, and lignan. These bioactive compounds’ antioxidative, antimicrobial, and antidiabetic properties are important in the human diet. Since fruits are one of the major sources of health-promoting nutrients for human consumption, they have high economic value. Ripening is a developmental process which involves changes in the colour, texture, taste, and metabolite composition of fruits, thus affecting their quality. In the market, the good quality of fruits depends on the ripening stage. Rapid ripening could shorten the shelf-life and quality of fruits. Shortened shelf-life causes fruit spoilage during post-harvest, transport, storage, and distribution. In turn, it will cause economic losses in the fruit market. Low-temperature storage is one of the techniques to prolong the shelf-life of fruits. However, this technique requires an expensive facility to achieve and maintain the low temperature. On the other hand, it has been reported that hexanal treatment could prolong the shelf-life and quality of fruits. It is also cheaper and easier to apply. However, the ripening inhibition mechanism of hexanal is not yet fully understood. The effectiveness of hexanal treatment on different fruits is also unclear. Numerous publications on hexanal treatment reported different formulations, techniques, and effectiveness rates on different fruits. Optimised formulation and technique are important to develop an efficient hexanal treatment strategy. Therefore, the mechanism, effectiveness, formulation, technique, and development of hexanal-based products to prolong the shelf-life of fruits are discussed in this review.

  • Baggio, J. S., de Afonseca Lourenço, & Amorim, L. (2014). Eradicant and curative treatments of hexanal against peach brown rot. Scientia Agricola, 71(1), 72–76.

  • Bisignano, G., Laganà, M. G., Trombetta, D., Arena, S., Nostro, A., Uccella, N., Mazzanti, G., & Saija, A. (2001). In vitro antibacterial activity of some aliphatic aldehydes from Olea europaea L. FEMS Microbiology Letters, 198(1), 9–13.

  • Chang, L.-Y., & Brecht, J. K. (2023). Responses of 1-methylcyclopropene (1-MCP)−treated banana fruit to pre− and post−treatment ethylene exposure. Scientia Horticulturae, 309, 111636.

  • Cho, Y., Song, M.-K., & Ryu, J.-C. (2021). DNA methylome signatures as epigenetic biomarkers of hexanal associated with lung toxicity. PeerJ, 9, e10779.

  • Dhakshinamoorthy, D., Sundaresan, S., Iyadurai, A., Subramanian, K. S., Janavi, G. J., Paliyath, G., & Subramanian, J. (2020). Hexanal vapor induced resistance against major postharvest pathogens of banana (Musa acuminata L.). Plant Pathology Journal, 36(2), 133–147.

  • Dhalaria, R., Verma, R., Kumar, D., Puri, S., Tapwal, A., Kumar, V., Nepovimova, E., & Kuca, K. (2020). Bioactive compounds of edible fruits with their anti-aging properties: A comprehensive review to prolong human life. Antioxidants, 9(11), 1123.

  • dos Santos, S. F., de Cassia Viera Cardoso, R., Borges, Í. M. P., e Almeida, A. C., Andrade, E. S., Ferreira, I. O., & do Carmo Ramos, L. (2020). Post-harvest losses of fruits and vegetables in supply centers in Salvador, Brazil: Analysis of determinants, volumes and reduction strategies. Waste Management, 101, 161–170.

  • Du, X., Finn, C. E., & Qian, M. C. (2010). Volatile composition and odour-activity value of thornless ‘Black Diamond’ and ‘Marion’ blackberries. Food Chemistry, 119(3), 1127–1134.

  • El Kayal, W., Paliyath, G., Sullivan, J. A., & Subramanian, J. (2017). Phospholipase D inhibition by hexanal is associated with calcium signal transduction events in raspberry. Horticulture Research, 4, 17042.

  • Fan, L., Song, J., Beaudry, R. M., & Hildebrand, P. D. (2006). Effect of hexanal vapor on spore viability of Penicillium expansum, lesion development on whole apples and fruit volatile biosynthesis. Journal of Food Science, 71(3), M105-M109.

  • Fan, L., Zheng, S., & Wang, X. (1997). Antisense suppression of phospholipase D alpha retards abscisic acid- and ethylene-promoted senescence of postharvest Arabidopsis leaves. Plant Cell, 9(12), 2183–2196.

  • Food and Agriculture Organization of the United Nations. (2023). Agricultural production statistics 2000-2022: FAOSTAT Analytical Brief 79. FAO.

  • Frohman, M. A., Sung, T.-C., & Morris, A. J. (1999). Mammalian phospholipase D structure and regulation. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1439(2), 175–186.

  • Gardini, F., R. Lanciotti, R., Caccioni, D. R. L., & Guerzoni, M. E. (1997). Antifungal activity of hexanal as dependent on its vapor pressure. Journal of Agriculture and Food Chemistry, 45(11), 4297–4302.

  • Genovese, A., Caporaso, N., & Sacchi, R. (2021). Flavor chemistry of virgin olive oil: An overview. Applied Sciences, 11(4), 1639.

  • Gill, K. S., Dhaliwal, H. S., Mahajan, B. V. C., Paliyath, G., & Boora, R. S. (2016). Enhancing postharvest shelf life and quality of guava (Psidium guajava L.) cv. Allahabad Safeda by pre-harvest application of hexanal containing aqueous formulation. Postharvest Biology and Technology, 112, 224–232.

  • Gunasekaran, K., Karthika, S., Nandakumar, N. B., Subramanian, K. S., Paliyath, G., & Subramanian, J. (2015). Biosafety of hexanal. International Development Research Centre.

  • Gustavsson, J., & Stage, J. (2011). Retail waste of horticultural products in Sweden. Resources, Conservation and Recycling, 55(5), 554–556.

  • Hammond, S. M., Jenco, J. M., Nakashima, S., Cadwallader, K., Gu, Q. M., Cook, S., Nozawa, Y., Prestwich, G. D., Frohman, M. A., & Morris, A. J. (1997). Characterization of two alternately spliced forms of phospholipase D1: Activation of the purified enzymes by phosphatidylinositol 4,5-bisphosphate, ADP-ribosylation factor, and RHO family monomeric GTP-binding proteins and protein kinase C-α. Journal of Biological Chemistry, 272(6), 3860–3868.

  • Hanahan, D. J., & Chaikoff, I. L. (1947). The phosphorus-containing lipides of the carrot. Journal of Biological Chemistry, 168(1), 233–240.

  • Hanning, I. B., Nutt, J. D., & Ricke, S. C. (2009). Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures. Foodborne Pathogens and Disease, 6(6), 635–648.

  • He, Y., Chen, R., Qi, Y., Salazar, J. K., Zhang, S., Tortorello, M. L., Deng, X., & Zhang, W. (2021). Survival and transcriptomic response of Salmonella enterica on fresh-cut fruits. International Journal of Food Microbiology, 348, 109201.

  • Helander, I. M., von Wright, A., & Mattila-Sandholm, T.-M. (1997). Potential of lactic acid bacteria and novel antimicrobials against Gram-negative bacteria. Trends in Food Science and Technology, 8(5), 146–150.

  • Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. Plant Cell, 17(8), 2142–2155.

  • Ho, C.-T., Zheng, X., & Li, S. (2015). Tea aroma formation. Food Science and Human Wellness, 4(1), 9–27.

  • Jincy, M., Djanaguiraman, M., Jeyakumar, P., Subramanian, K. S., Jayasankar, S., & Paliyath, G. (2017). Inhibition of phospholipase D enzyme activity through hexanal leads to delayed mango (Mangifera indica L.) fruit ripening through changes in oxidants and antioxidant enzymes activity. Scientia Horticulturae, 218, 316–325.

  • Karasawa, M. M. G., & Mohan, C. (2018). Fruits as prospective reserves of bioactive compounds: A review. Natural Products and Bioprospecting, 8, 335–346.

  • Karthika, S., Nanda Kumar, N. B., Gunasekaran, K., & Subramanian, K. S. (2015). Biosafety of nanoemulsion of hexanal to honey bees and natural enemies. Indian Journal of Science and Technology, 8(30), 1-7.

  • Kaya, O., Incesu, M., Ates, F., Keskin, N., Verdugo-Vásquez, N., & Gutiérrez-Gamboa, G. (2022). Study of volatile organic compounds of two table grapes (cv. Italia and Bronx Seedless) along ripening in vines established in the Aegean Region (Turkey). Plants, 11(15), 1935.

  • Khan, A. S., & Ali, S. (2018). Preharvest sprays affecting shelf life and storage potential of fruits. In M. W. Siddiqui (Ed.), Preharvest modulation of postharvest fruit and vegetable quality (pp. 209-225). Academic Press.

  • Kumar, S. K., El Kayal, W., Sullivan, J. A., Paliyath, G., & Jayasankar, S. (2018). Pre-harvest application of hexanal formulation enhances shelf life and quality of ‘Fantasia’ nectarines by regulating membrane and cell wall catabolism-associated genes. Scientia Horticulturae, 229, 117–124.

  • Lamba, A. (2007). Antimicrobial activities of aldehydes and ketones produced during rapid volatilization of biogenic oils [Master’s thesis, Missouri University of Science and Technology]. Missouri University of Science and Technology library and Learning Resources.

  • Lanciotti, R., Gianotti, A., Patrignani, F., Belletti, N., Guerzoni, M. E., & Gardini, F. (2004). Use of natural aroma compounds to improve shelf-life and safety of minimally processed fruits. Trends in Food Science and Technology, 15(3–4), 201–208.

  • Lee, J., Vázquez-Araújo, L., Adhikari, K., Warmund, M., & Elmore, J. (2011). Volatile compounds in light, medium, and dark black walnut and their influence on the sensory aromatic profile. Journal of Food Science, 76(2), C199–C204.

  • Li, J., Yu, F., Guo, H., Xiong, R., Zhang, W., He, F., Zhang, M., & Zhang, P. (2020). Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Research, 30, 61–69.

  • Li, L., Yi, P., Huang, F., Tang, J., Sun, J., Duan, X., Li, J., Su, Z., Ling, D., Tang, Y., Li, C., He, X., Sheng, J., Li, Z., Huang, M., Xin, M., & Gan, T. (2022). Effects of phospholipase D inhibitors treatment on membrane lipid metabolism of postharvest banana fruit in response to mechanical wounding stress. Horticulturae, 8(10), 901.

  • Li, S.-F., Zhang, S.-B., Lv, Y.-Y., Zhai, H.-C., Li, N., Hu, Y.-S., & Cai, J.-P. (2021). Metabolomic analyses revealed multifaceted effects of hexanal on Aspergillus flavus growth. Applied Microbiology and Biotechnology, 105, 3745–3757.

  • Lv, J., Zhang, Y., Sun, M., Chen, J., Ge, Y., & Li, J. (2023). 1-Methylcyclopropene (1-MCP) treatment differentially mediated expression of vacuolar processing enzyme (VPE) genes and delayed programmed cell death (PCD) during ripening and senescence of apple fruit. Scientia Horticulturae, 307, 111489.

  • Marangoni, A. G., Palma, T., & Stanley, D. W. (1996). Membrane effects in postharvest physiology. Postharvest Biology and Technology, 7(3), 193–217.

  • Martini, C., & Mari, M. (2014). Monilinia fructicola, Monilinia laxa (Monilinia rot, brown rot). In S. Bautista-Baños (Ed.), Postharvest decay: Control strategies (pp. 233-265). Academic Press.

  • Mohan, C., Priya, S. S., Sridharan, S., & Subramanian, K. S. (2020). Biosafety of nanoemulsion of hexanal on Chrysoperla zastrowi sillemi Stephens (Chrysopidae: Neuroptera). International Journal of Current Microbiology and Applied Sciences, 9(7), 1466–1475.

  • Mohan, C., Sridharan, S., Gunasekaran, K., Subramanian, K. S., & Natarajan, N. (2017a). Biosafety of hexanal as nanoemulsion on egg parasitoid Trichogramma spp. Journal of Entomology and Zoology Studies, 5(2), 1541–1544.

  • Mohan, C., Sridharan, S., Subramanian, K. S., Natarajan, N., & Nakkeeran, S. (2017b). Effect of nanoemulsion of hexanal on honey bees (Hymenoptera; Apidae). Journal of Entomology and Zoology Studies, 5(53), 1415–1418.

  • Nair, D. V. T., Venkitanarayanan, K., & Johny, A. K. (2018). Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7(10), 167.

  • Nair, I. J., Sharma, S., & Kaur, R. (2020). Efficacy of the green lace wing, Chrysoperla zastrowi sillemi (Esben-Peterson) (Neuroptera: Chrysopidae), against sucking pests of tomato: An appraisal under protected conditions. Egyptian Journal of Biological Pest Control, 30, 74.

  • National Library of Medicine. (n.d.). Hexanal. NIH.

  • Novák, D., Vadovič, P., Ovečka, M., Šamajová, O., Komis, G., Colcombet, J., & Šamaj, J. (2018). Gene expression pattern and protein localization of Arabidopsis phospholipase D alpha 1 revealed by advanced light-sheet and super-resolution microscopy. Frontiers in Plant Science, 9, 371.

  • Padmanabhan, P., Cheema, A. S., Todd, J. F., Lim, L.-T., & Paliyath, G. (2020). Ripening responses, fruit quality and phospholipase D gene expression in bell peppers exposed to hexanal vapor. Postharvest Biology and Technology, 170, 111317.

  • Paliyath, G., Tiwari, K., Yuan, H. Y., & Whitaker, B. D. (2008). Structural deterioration in produce: Phospholipase D, membrane and senescence. In G. Paliyath, D. P. Murr, A. K. Handa, & S. Lurie (Eds.), Postharvest biology and technology of fruits, vegetables and flowers (pp. 195–239). Wiley-Blackwell.

  • Payasi, A., Mishra, N. N., Chaves, A. L. S., & Singh, R. (2009). Biochemistry of fruit softening: An overview. Physiology and Molecular Biology of Plants, 15, 103–113.

  • Pérez, A. G., Sanz, C., Olías, R., & Olías, J. M. (1999). Lipoxygenase and hydroperoxide lyase activities in ripening strawberry fruits. Journal of Agricultural and Food Chemistry, 47(1), 249–253.

  • Preethi, P., Soorianathasundaram, K., Sadasakthi, A., Subramanian, K., Reddy, S. V., Paliyath, G., & Subramanian, J. (2021). Preharvest application of hexanal as a surface treatment. Coatings, 11(10), 1267.

  • Qin, C., & Wang, X. (2002). The Arabidopsis phospholipase D family. Characterization of a calcium-independent and phosphatidylcholine-selective PLDζ1 with distinct regulatory domains. Plant Physiology, 128(3), 1057–1068.

  • Razali, N. A., Wan, I. W. M., Safari, S., Rosly, N. K., Hamzah, F. A., & Wan Husin, W. M. R. I. (2022). Cryogenic freezing preserves the quality of whole durian fruit for the export market. Food Research, 6(3), 360–364.

  • Seethapathy, P., Gurudevan, T., Subramanian, K. S., & Kuppusamy, P. (2016). Bacterial antagonists and hexanal-induced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot. Journal of Plant Interactions, 11(1), 158–166.

  • Sharma, M., Jacob, J. K., Subramanian, J., & Paliyath, G. (2010). Hexanal and 1-MCP treatments for enhancing the shelf life and quality of sweet cherry (Prunus avium L.). Scientia Horticulturae, 125(3), 239–247.

  • Silué, Y., Nindjin, C., Cissé, M., Kouamé, K. A., Amani, N. Guessan G., Mbéguié-A- Mbéguié, D., Lopez-Lauri, F., & Tano, K. (2022). Hexanal application reduces postharvest losses of mango (Mangifera indica L. variety “Kent”) over cold storage whilst maintaining fruit quality. Postharvest Biology and Technology, 189, 111930.

  • Song, J., Hildebrand, P. D., Fan, L., Forney, C. F., Renderos, W. E., Campbell-Palmer, L., & Doucette, C. (2007). Effect of hexanal vapor on the growth of postharvest pathogens and fruit decay. Journal of Food Science, 72(4), M108–M112.

  • Song, J., Leepipattanawit, R., Deng, W., & Beaudry, R. M. (1996). Hexanal vapor is a natural, metabolizable fungicide: Inhibition of fungal activity and enhancement of aroma biosynthesis in apple slices. Journal of the American Society for Horticultural Science, 121(5), 937–942.

  • Songe, J., Fan, L., Forney, C., Campbell, P. L., & Fillmore, S. (2010). Effect of hexanal vapor to control postharvest decay and extend shelf-life of highbush blueberry fruit during controlled atmosphere storage. Canadian Journal of Plant Science, 90(3), 359–366.

  • Tan, P. F., Ng, S. K., Tan, T. B., Chong, G. H., & Tan, C. P. (2019). Shelf life determination of durian (Durio zibethinus) paste and pulp upon high-pressure processing. Food Research, 3(3), 221–230.

  • Thongkum, M., Imsabai, W., Burns, P., McAtee, P. A., Schaffer, R. J., Allan, A. C., & Ketsa, S. (2018). The effect of 1-methylcyclopropene (1-MCP) on expression of ethylene receptor genes in durian pulp during ripening. Plant Physiology and Biochemistry, 125, 232–238.

  • Tiwari, K., & Paliyath, G. (2011). Microarray analysis of ripening-regulated gene expression and its modulation by 1-MCP and hexanal. Plant Physiology and Biochemistry, 49(3), 329–340.

  • Voora, V., Larrea, C., & Bermudez, S. (2020). Global Market Report: Bananas. International Institute for Sustainable Development.

  • Wang, X., Xu, L., & Zheng, L. (1994). Cloning and expression of phosphatidylcholine-hydrolyzing phospholipase D from Ricinus communis L. Journal of Biological Chemistry, 269(32), 20312–20317.

  • Whitney, S. E. C., Gidley, M. J., & McQueen-Mason, S. J. (2000). Probing expansin action using cellulose/hemicellulose composites. The Plant Journal, 22(4), 327–334.

  • Yumbya, P. M., Hutchinson, M. J., Ambuko, J., Owino, W. O., Sullivan, A., Paliyath, G., & Subramanian, J. (2018). Efficacy of hexanal application on the postharvest shelf life and quality of banana fruits (Musa acuminata) in Kenya. Tropical Agriculture, 95(1), 14-35.

  • Zambonelli, C., & Roberts, M. F. (2005). Non-HKD phospholipase D enzymes: New players in phosphatidic acid signaling? Progress in Nucleic Acid Research and Molecular Biology, 79, 133–181.

  • Zhang, K., Gao, L., Zhang, C., Feng, T., & Zhuang, H. (2022). Analysis of volatile flavor compounds of corn under different treatments by GC-MS and GC-IMS. Frontiers in Chemistry, 10, 725208.

  • Zhang, Q., Song, P., Qu, Y., Wang, P., Jia, Q., Guo, L., Zhang, C., Mao, T., Yuan, M., Wang, X., & Zhang, W. (2017). Phospholipase Dδ negatively regulates plant thermotolerance by destabilizing cortical microtubules in Arabidopsis. Plant Cell and Environment, 40(10), 2220–2235.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Related Articles