e-ISSN 2231-8542
ISSN 1511-3701
Fathiya Khairiya, Fenny Martha Dwivany, Sony Suhandono, Sofia Safitri Hessel, Ima Mulyama Zainuddin and Trina Ekawati Tallei
Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 3, August 2023
DOI: https://doi.org/10.47836/pjtas.46.3.06
Keywords: In silico comparative study, plant lectins, synthetic biology
Published on: 30 August 2023
Lectins are a family of proteins that can recognize and bind specific carbohydrates. Plant lectins play various roles in plant defense and can be utilized as insecticidal, antibacterial, antifungal, and antiviral agents. This study compares genes, proteins, and carbohydrate-binding motifs between 15 plant lectins using in silico methods. The lectin genes of Artocarpus hypargyreus Hance, Hordeum vulgare var. Betzes, Triticum aestivum L. cv. Marshall, Galanthus nivalis L., Allium sativum L., Phaseolus vulgaris, Lens culinaris subsp. tomentosus, Robinia pseudoacacia, Glycine max, Cicer arietinum, Pisum sativum, Canavalia ensiformis, Amaranthus caudatus, Amaranthus hypochondriacus, and Musa acuminata subsp. malaccensis were obtained from National Center for Biotechnology Information and Banana Genome Hub. The gene comparison results revealed different characteristics of the 15 plant lectin genes, with A. hypargyreus having the shortest lectin gene and G. max having the longest. Overall, the 15 plant lectin genes have 1–3 exons. Domain predictions revealed the presence of five domains: jacalin, chitin_bind_1, B_lectin, legume lectin, and agglutinin. Furthermore, there were 2 protein sequences from the jacalin domain, 2 protein sequences from the chitin_bind_I domain, 2 protein sequences from the B_lectin domain, and 4 protein sequences from the legume lectin domains that have complete carbohydrate-binding motifs compared to consensus motifs from literature. The data obtained from this study has not been previously reported and can be utilized for future lectin protein production with synthetic biology approaches. This method will allow scientists to obtain plant bioparts for lectin production using a heterologous system, even without plant samples.
Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME Suite: Tools for motif discovery and searching. Nucleic Acids Research, 37(Suppl_2), W202–W208. https://doi.org/10.1093/nar/gkp335
Barre, A., Van Damme, E. J. M., Peumans, W. J., & Rougé, P. (1997). Curculin, a sweet-tasting and taste-modifying protein, is a non-functional mannose-binding lectin. Plant Molecular Biology, 33, 691–698. https://doi.org/10.1023/A:1005704616565
Butler, A. R., O’Donnell, R. W., Martin, V. J., Gooday, G. W., & Stark, M. J. (1991). Kluyveromyces lactis toxin has an essential chitinase activity. European Journal of Biochemistry, 199(2), 483–488. https://doi.org/10.1111/j.1432-1033.1991.tb16147.x
Charungchitrak, S., Petsom, A., Sangvanich, P., & Karnchanatat, A. (2011). Antifungal and antibacterial activities of lectin from the seeds of Archidendron jiringa Nielsen. Food Chemistry, 126(3), 1025–1032. https://doi.org/10.1016/j.foodchem.2010.11.114
Christodoulou, I., Rahnama, R., Ravich, J. W., Seo, J., Zolov, S. N., Marple, A. N., Markovitz, D. M., & Bonifant, C. L. (2021). Glycoprotein targeted CAR-NK cells for the treatment of SARS-CoV-2 infection. Frontiers in Immunology, 12, 763460. https://doi.org/10.3389/fimmu.2021.763460
Coelho, L. C. B. B., dos Santos Silva, P. M., de Menezes Lima, V. L., Pontual, E. V., Paiva, P. M. G., Napoleão, T. H., & dos Santos Correia, M. T. (2017). Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evidence-Based Complementary and Alternative Medicine, 2017, 1594074. https://doi.org/10.1155/2017/1594074
Covés-Datson, E. M., Dyall, J., DeWald, L. E., King, S. R., Dube, D., Legendre, M., Nelson, E., Drews, K. C., Gross, R., Gerhardt, D. M., Torzewski, L., Postnikova, E., Liang, J. Y., Ban, B., Shetty, J., Hensley, L. E., Jahrling, P. B., Olinger, G. G., White, J. M., & Markovitz, D. M. (2019). Inhibition of Ebola virus by a molecularly engineered banana lectin. PLOS Neglected Tropical Diseases, 13(7), e0007595. https://doi.org/10.1371/journal.pntd.0007595
Covés-Datson, E. M., King, S. R., Legendre, M., Gupta, A., Chan, S. M., Gitlin, E., Kulkarni, V. V., García, J. P., Smee, D. F., Lipka, E., Evans, S. E., Tarbet, E. B., Ono, A., & Markovitz, D. M. (2020). A molecularly engineered antiviral banana lectin inhibits fusion and is efficacious against influenza virus infection in vivo. Proceedings of the National Academy of Sciences, 117(4), 2122–2132. https://doi.org/10.1073/pnas.1915152117
Covés-Datson, E. M., King, S. R., Legendre, M., Swanson, M. D., Gupta, A., Claes, S., Meagher, J. L., Boonen, A., Zhang, L., Kalveram, B., Raglow, Z., Freiberg, A. N., Prichard, M., Stuckey, J. A., Schols, D., & Markovitz, D. M. (2021). Targeted disruption of pi–pi stacking in Malaysian banana lectin reduces mitogenicity while preserving antiviral activity. Scientific Reports, 11, 656. https://doi.org/10.1038/s41598-020-80577-7
Cummings, R. D., Marylinn, E. E., & Surolia, A. (2017). Essentials of glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press.
Dang, L., & Van Damme, E. J. M. (2016). Genome-wide identification and domain organization of lectin domains in cucumber. Plant Physiology and Biochemistry, 108, 165–176. https://doi.org/10.1016/j.plaphy.2016.07.009
Dwivany, F. M., Sukriandi, N., Meitha, K., & Brotosudarmo, T. H. P. (2021). In silico characterization of the structure of genes and proteins related to β-carotene degradation in Musa acuminata ‘DH-Pahang’ and Musa balbisiana ‘Pisang Klutuk Wulung’. Pertanika Journal of Tropical Agricultural Science, 44(2), 429–447. https://doi.org/10.47836/pjtas.44.2.10
Esch, L., & Schaffrath, U. (2017). An update on jacalin-like lectins and their role in plant defense. International Journal of Molecular Sciences, 18(7), 1592. https://doi.org/10.3390/ijms18071592
Fitches, E., Woodhouse, S. D., Edwards, J. P., & Gatehouse, J. A. (2001). In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; Con A) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action. Journal of Insect Physiology, 47(7), 777–787. https://doi.org/10.1016/S0022-1910(01)00068-3
Gautam, A. K., Gupta, N., Narvekar, D. T., Bhadkariya, R., & Bhagyawant, S. S. (2018). Characterization of chickpea (Cicer arietinum L.) lectin for biological activity. Physiology and Molecular Biology of Plants, 24(3), 389–397. https://doi.org/10.1007/s12298-018-0508-5
Hessel, S. S., Dwivany, F. M., Zainuddin, I. M., Celik, I., Emran, T. bin, & Tallei, T. E. (2022). Banana lectin as a potential candidate for anti-SARS CoV-2 by targeting the receptor-binding domain: A computational analysis [Unpublished Master’s thesis]. Bandung Institute of Technology.
Jiang, S. Y., Ma, Z., & Ramachandran, S. (2010). Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evolutionary Biology, 10, 79. https://doi.org/10.1186/1471-2148-10-79
Kamalesha, G., Dwivany, F. M., Nugrahapraja, H., & Rahma Putri, R. (2022). In silico comparisons of the Ethylene Response Factor 1 (ERF1) gene between Malaysian wild banana (Musa acuminata ssp. malaccensis) and Pisang Klutuk Wulung (Musa balbisiana). Pertanika Journal of Tropical Agricultural Science, 45(2), 519–545. https://doi.org/10.47836/pjtas.45.2.12
Katoch, R., & Tripathi, A. (2021). Research advances and prospects of legume lectins. Journal of Biosciences, 46, 104. https://doi.org/10.1007/s12038-021-00225-8
Kirubakaran, S. I., & Sakthivel, N. (2007). Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Protein Expression and Purification, 52(1), 159–166. https://doi.org/10.1016/j.pep.2006.08.012
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Lagarda-Diaz, I., Guzman-Partida, A., & Vazquez-Moreno, L. (2017). Legume lectins: Proteins with diverse applications. International Journal of Molecular Sciences, 18(6), 1242. https://doi.org/10.3390/ijms18061242
Lam, S. K., & Ng, T. B. (2011). Lectins: Production and practical applications. Applied Microbiology and Biotechnology, 89, 45–55. https://doi.org/10.1007/s00253-010-2892-9
Liu, B., Bian, H.-J., & Bao, J.-K. (2010). Plant lectins: Potential antineoplastic drugs from bench to clinic. Cancer Letters, 287(1), 1–12. https://doi.org/10.1016/j.canlet.2009.05.013
Liu, W., Xie, Y., Ma, J., Luo, X., Nie, P., Zuo, Z., Lahrmann, U., Zhao, Q., Zheng, Y., Zhao, Y., Xue, Y., & Ren, J. (2015). IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics, 31(20), 3359–3361. https://doi.org/10.1093/bioinformatics/btv362
Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268. https://doi.org/10.1093/nar/gkz991
Mann, K., Farias, C. M. S. A., del Sol, F. G., Santos, C. F., Grangeiro, T. B., Nagano, C. S., Cavada, B. S., & Calvete, J. J. (2001). The amino-acid sequence of the glucose/mannose-specific lectin isolated from Parkia platycephala seeds reveals three tandemly arranged jacalin-related domains. European Journal of Biochemistry, 268(16), 4414–4422. https://doi.org/10.1046/j.1432-1327.2001.02368.x
Meagher, J. L., Winter, H. C., Ezell, P., Goldstein, I. J., & Stuckey, J. A. (2005). Crystal structure of banana lectin reveals a novel second sugar binding site. Glycobiology, 15(10), 1033–1042. https://doi.org/10.1093/glycob/cwi088
Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., Brown, S. D., Chang, H.-Y., El-Gebali, S., Fraser, M. I., Gough, J., Haft, D. R., Huang, H., Letunic, I., Lopez, R., Luciani, A., Madeira, F., Marchler-Bauer, A., Mi, H., … Finn, R. D. (2019). InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 47(D1), D351–D360. https://doi.org/10.1093/nar/gky1100
Moraes Filho, R. M., Rossiter, J. G., Cavalcanti Junior, E. A., & Martins, L. S. S. (2017). In silico comparative analysis of legume lectins. Journal of Genetics and Genomes, 1(1), 1000103.
Naithani, S., Komath, S. S., Nonomura, A., & Govindjee, G. (2021). Plant lectins and their many roles: Carbohydrate-binding and beyond. Journal of Plant Physiology, 266, 153531. https://doi.org/10.1016/j.jplph.2021.153531
Pereira, P. R., Winter, H. C., Verícimo, M. A., Meagher, J. L., Stuckey, J. A., Goldstein, I. J., Paschoalin, V. M. F., & Silva, J. T. (2015). Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta. Biochimica et Biophysica Acta - Proteins and Proteomics, 1854(1), 20–30. https://doi.org/10.1016/j.bbapap.2014.10.013
Peumans, W. J., & Van Damme, E. J. M. (1995). Lectins as plant defense proteins. Plant Physiology, 109(2), 347–352. https://doi.org/10.1104/pp.109.2.347
Quiroga, A. V., Barrio, D. A., & Añón, M. C. (2015). Amaranth lectin presents potential antitumor properties. LWT - Food Science and Technology, 60(1), 478–485. https://doi.org/10.1016/j.lwt.2014.07.035
Raval, S., Gowda, S. B., Singh, D. D., & Chandra, N. R. (2004). A database analysis of jacalin-like lectins: Sequence-structure-function relationships. Glycobiology, 14(12), 1247–1263. https://doi.org/10.1093/glycob/cwh140
Rinderle, S. J., Goldstein, I. J., Matta, K. L., & Ratcliffe, R. M. (1989). Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or cryptic T)-antigen. Journal of Biological Chemistry, 264(27), 16123–16131. https://doi.org/10.1016/S0021-9258(18)71595-0
Ryva, B., Zhang, K., Asthana, A., Wong, D., Vicioso, Y., & Parameswaran, R. (2019). Wheat germ agglutinin as a potential therapeutic agent for leukemia. Frontiers in Oncology, 9, 100. https://doi.org/10.3389/fonc.2019.00100
Scott, D., Abdelhakim, D., Miranda, M., Höft, R., & Cooper, H. D. (2015). Potential positive and negative impacts of components, organisms and products resulting from synthetic biology techniques on the conservation and sustainable use of biodiversity and associated social, economic and cultural considerations. https://www.cbd.int/doc/meetings/cop/cop-12/information/cop-12-inf-11-en.pdf
Singh, S. S., Devi, S. K., & Ng, T. B. (2014). Banana lectin: A brief review. Molecules, 19(11), 18817–18827. https://doi.org/10.3390/molecules191118817
Song, M., Xu, W., Xiang, Y., Jia, H., Zhang, L., & Ma, Z. (2014). Association of jacalin-related lectins with wheat responses to stresses revealed by transcriptional profiling. Plant Molecular Biology, 84, 95–110. https://doi.org/10.1007/s11103-013-0121-5
Srinivas, V. R., Acharya, S., Rawat, S., Sharma, V., & Surolia, A. (2000). The primary structure of the acidic lectin from winged bean (Psophocarpus tetragonolobus): Insights in carbohydrate recognition, adenine binding and quaternary association. FEBS Letters, 474(1), 76–82. https://doi.org/10.1016/S0014-5793(00)01580-5
Swanson, M. D., Winter, H. C., Goldstein, I. J., & Markovitz, D. M. (2010). A lectin isolated from bananas is a potent inhibitor of HIV replication. Journal of Biological Chemistry, 285(12), 8646–8655. https://doi.org/10.1074/jbc.M109.034926
Tsaneva, M., & Van Damme, E. J. M. (2020). 130 years of plant lectin research. Glycoconjugate Journal, 37, 533–551. https://doi.org/10.1007/s10719-020-09942-y
Van Damme, E. J. M. (2014). History of plant lectin research. In J. Hirabayashi (Ed.), Lectins. Methods in molecular biology (Vol. 1200, pp. 3–13). Humana Press. https://doi.org/10.1007/978-1-4939-1292-6_1
Van Damme, E. J. M. (2022). 35 years in plant lectin research: A journey from basic science to applications in agriculture and medicine. Glycoconjugate Journal, 39, 83–97. https://doi.org/10.1007/s10719-021-10015-x
Van Damme, E. J. M., Lannoo, N., & Peumans, W. J. (2008). Plant lectins. Advances in Botanical Research, 48, 107–209. https://doi.org/10.1016/S0065-2296(08)00403-5
Van Holle, S., de Schutter, K., Eggermont, L., Tsaneva, M., Dang, L., & Van Damme, E. (2017). Comparative study of lectin domains in model species: New insights into evolutionary dynamics. International Journal of Molecular Sciences, 18(6), 1136. https://doi.org/10.3390/ijms18061136
Van Holle, S., & Van Damme, E. J. M. (2019). Messages from the past: New insights in plant lectin evolution. Frontiers in Plant Science, 10, 36. https://doi.org/10.3389/fpls.2019.00036
Vandenborre, G., Smagghe, G., & Van Damme, E. J. M. (2011). Plant lectins as defense proteins against phytophagous insects. Phytochemistry, 72(13), 1538–1550. https://doi.org/10.1016/j.phytochem.2011.02.024
Wang, W., Li, Q., Wu, J., Hu, Y., Wu, G., Yu, C., Xu, K., Liu, X., Wang, Q., Huang, W., Wang, L., & Wang, Y. (2021). Lentil lectin derived from Lens culinaris exhibit broad antiviral activities against SARS-CoV-2 variants. Emerging Microbes and Infections, 10(1), 1519–1529. https://doi.org/10.1080/22221751.2021.1957720
Wright, H. T., Sandrasegaram, G., & Wright, C. S. (1991). Evolution of a family of N-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin. Journal of Molecular Evolution, 33(3), 283–294. https://doi.org/10.1007/BF02100680
Xiong, J. (2006). Essential bioinformatics. Cambridge University Press. https://doi.org/10.1017/CBO9780511806087
Zeng, Q., Lin, F., Zeng, L., Deng, Y., & Li, L. (2019). Purification and characterization of a novel immunomodulatory lectin from Artocarpus hypargyreus Hance. International Immunopharmacology, 71, 285–294. https://doi.org/10.1016/j.intimp.2019.03.027
Zhao, Y., Jian, Y., Liu, Z., Liu, H., Liu, Q., Chen, C., Li, Z., Wang, L., Huang, H. H., & Zeng, C. (2017). Network analysis reveals the recognition mechanism for dimer formation of bulb-type lectins. Scientific Reports, 7, 2876. https://doi.org/10.1038/s41598-017-03003-5
ISSN 1511-3701
e-ISSN 2231-8542