e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 46 (3) Aug. 2023 / JTAS-2638-2022


In silico Comparative Analysis of Gene and Protein of Plant Lectins

Fathiya Khairiya, Fenny Martha Dwivany, Sony Suhandono, Sofia Safitri Hessel, Ima Mulyama Zainuddin and Trina Ekawati Tallei

Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 3, August 2023


Keywords: In silico comparative study, plant lectins, synthetic biology

Published on: 30 August 2023

Lectins are a family of proteins that can recognize and bind specific carbohydrates. Plant lectins play various roles in plant defense and can be utilized as insecticidal, antibacterial, antifungal, and antiviral agents. This study compares genes, proteins, and carbohydrate-binding motifs between 15 plant lectins using in silico methods. The lectin genes of Artocarpus hypargyreus Hance, Hordeum vulgare var. Betzes, Triticum aestivum L. cv. Marshall, Galanthus nivalis L., Allium sativum L., Phaseolus vulgaris, Lens culinaris subsp. tomentosus, Robinia pseudoacacia, Glycine max, Cicer arietinum, Pisum sativum, Canavalia ensiformis, Amaranthus caudatus, Amaranthus hypochondriacus, and Musa acuminata subsp. malaccensis were obtained from National Center for Biotechnology Information and Banana Genome Hub. The gene comparison results revealed different characteristics of the 15 plant lectin genes, with A. hypargyreus having the shortest lectin gene and G. max having the longest. Overall, the 15 plant lectin genes have 1–3 exons. Domain predictions revealed the presence of five domains: jacalin, chitin_bind_1, B_lectin, legume lectin, and agglutinin. Furthermore, there were 2 protein sequences from the jacalin domain, 2 protein sequences from the chitin_bind_I domain, 2 protein sequences from the B_lectin domain, and 4 protein sequences from the legume lectin domains that have complete carbohydrate-binding motifs compared to consensus motifs from literature. The data obtained from this study has not been previously reported and can be utilized for future lectin protein production with synthetic biology approaches. This method will allow scientists to obtain plant bioparts for lectin production using a heterologous system, even without plant samples.

  • Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME Suite: Tools for motif discovery and searching. Nucleic Acids Research, 37(Suppl_2), W202–W208.

  • Barre, A., Van Damme, E. J. M., Peumans, W. J., & Rougé, P. (1997). Curculin, a sweet-tasting and taste-modifying protein, is a non-functional mannose-binding lectin. Plant Molecular Biology, 33, 691–698.

  • Butler, A. R., O’Donnell, R. W., Martin, V. J., Gooday, G. W., & Stark, M. J. (1991). Kluyveromyces lactis toxin has an essential chitinase activity. European Journal of Biochemistry, 199(2), 483–488.

  • Charungchitrak, S., Petsom, A., Sangvanich, P., & Karnchanatat, A. (2011). Antifungal and antibacterial activities of lectin from the seeds of Archidendron jiringa Nielsen. Food Chemistry, 126(3), 1025–1032.

  • Christodoulou, I., Rahnama, R., Ravich, J. W., Seo, J., Zolov, S. N., Marple, A. N., Markovitz, D. M., & Bonifant, C. L. (2021). Glycoprotein targeted CAR-NK cells for the treatment of SARS-CoV-2 infection. Frontiers in Immunology, 12, 763460.

  • Coelho, L. C. B. B., dos Santos Silva, P. M., de Menezes Lima, V. L., Pontual, E. V., Paiva, P. M. G., Napoleão, T. H., & dos Santos Correia, M. T. (2017). Lectins, interconnecting proteins with biotechnological/pharmacological and therapeutic applications. Evidence-Based Complementary and Alternative Medicine, 2017, 1594074.

  • Covés-Datson, E. M., Dyall, J., DeWald, L. E., King, S. R., Dube, D., Legendre, M., Nelson, E., Drews, K. C., Gross, R., Gerhardt, D. M., Torzewski, L., Postnikova, E., Liang, J. Y., Ban, B., Shetty, J., Hensley, L. E., Jahrling, P. B., Olinger, G. G., White, J. M., & Markovitz, D. M. (2019). Inhibition of Ebola virus by a molecularly engineered banana lectin. PLOS Neglected Tropical Diseases, 13(7), e0007595.

  • Covés-Datson, E. M., King, S. R., Legendre, M., Gupta, A., Chan, S. M., Gitlin, E., Kulkarni, V. V., García, J. P., Smee, D. F., Lipka, E., Evans, S. E., Tarbet, E. B., Ono, A., & Markovitz, D. M. (2020). A molecularly engineered antiviral banana lectin inhibits fusion and is efficacious against influenza virus infection in vivo. Proceedings of the National Academy of Sciences, 117(4), 2122–2132.

  • Covés-Datson, E. M., King, S. R., Legendre, M., Swanson, M. D., Gupta, A., Claes, S., Meagher, J. L., Boonen, A., Zhang, L., Kalveram, B., Raglow, Z., Freiberg, A. N., Prichard, M., Stuckey, J. A., Schols, D., & Markovitz, D. M. (2021). Targeted disruption of pi–pi stacking in Malaysian banana lectin reduces mitogenicity while preserving antiviral activity. Scientific Reports, 11, 656.

  • Cummings, R. D., Marylinn, E. E., & Surolia, A. (2017). Essentials of glycobiology (3rd ed.). Cold Spring Harbor Laboratory Press.

  • Dang, L., & Van Damme, E. J. M. (2016). Genome-wide identification and domain organization of lectin domains in cucumber. Plant Physiology and Biochemistry, 108, 165–176.

  • Dwivany, F. M., Sukriandi, N., Meitha, K., & Brotosudarmo, T. H. P. (2021). In silico characterization of the structure of genes and proteins related to β-carotene degradation in Musa acuminata ‘DH-Pahang’ and Musa balbisiana ‘Pisang Klutuk Wulung’. Pertanika Journal of Tropical Agricultural Science, 44(2), 429–447.

  • Esch, L., & Schaffrath, U. (2017). An update on jacalin-like lectins and their role in plant defense. International Journal of Molecular Sciences, 18(7), 1592.

  • Fitches, E., Woodhouse, S. D., Edwards, J. P., & Gatehouse, J. A. (2001). In vitro and in vivo binding of snowdrop (Galanthus nivalis agglutinin; GNA) and jackbean (Canavalia ensiformis; Con A) lectins within tomato moth (Lacanobia oleracea) larvae; mechanisms of insecticidal action. Journal of Insect Physiology, 47(7), 777–787.

  • Gautam, A. K., Gupta, N., Narvekar, D. T., Bhadkariya, R., & Bhagyawant, S. S. (2018). Characterization of chickpea (Cicer arietinum L.) lectin for biological activity. Physiology and Molecular Biology of Plants, 24(3), 389–397.

  • Hessel, S. S., Dwivany, F. M., Zainuddin, I. M., Celik, I., Emran, T. bin, & Tallei, T. E. (2022). Banana lectin as a potential candidate for anti-SARS CoV-2 by targeting the receptor-binding domain: A computational analysis [Unpublished Master’s thesis]. Bandung Institute of Technology.

  • Jiang, S. Y., Ma, Z., & Ramachandran, S. (2010). Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evolutionary Biology, 10, 79.

  • Kamalesha, G., Dwivany, F. M., Nugrahapraja, H., & Rahma Putri, R. (2022). In silico comparisons of the Ethylene Response Factor 1 (ERF1) gene between Malaysian wild banana (Musa acuminata ssp. malaccensis) and Pisang Klutuk Wulung (Musa balbisiana). Pertanika Journal of Tropical Agricultural Science, 45(2), 519–545.

  • Katoch, R., & Tripathi, A. (2021). Research advances and prospects of legume lectins. Journal of Biosciences, 46, 104.

  • Kirubakaran, S. I., & Sakthivel, N. (2007). Cloning and overexpression of antifungal barley chitinase gene in Escherichia coli. Protein Expression and Purification, 52(1), 159–166.

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549.

  • Lagarda-Diaz, I., Guzman-Partida, A., & Vazquez-Moreno, L. (2017). Legume lectins: Proteins with diverse applications. International Journal of Molecular Sciences, 18(6), 1242.

  • Lam, S. K., & Ng, T. B. (2011). Lectins: Production and practical applications. Applied Microbiology and Biotechnology, 89, 45–55.

  • Liu, B., Bian, H.-J., & Bao, J.-K. (2010). Plant lectins: Potential antineoplastic drugs from bench to clinic. Cancer Letters, 287(1), 1–12.

  • Liu, W., Xie, Y., Ma, J., Luo, X., Nie, P., Zuo, Z., Lahrmann, U., Zhao, Q., Zheng, Y., Zhao, Y., Xue, Y., & Ren, J. (2015). IBS: An illustrator for the presentation and visualization of biological sequences. Bioinformatics, 31(20), 3359–3361.

  • Lu, S., Wang, J., Chitsaz, F., Derbyshire, M. K., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Marchler, G. H., Song, J. S., Thanki, N., Yamashita, R. A., Yang, M., Zhang, D., Zheng, C., Lanczycki, C. J., & Marchler-Bauer, A. (2020). CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Research, 48(D1), D265–D268.

  • Mann, K., Farias, C. M. S. A., del Sol, F. G., Santos, C. F., Grangeiro, T. B., Nagano, C. S., Cavada, B. S., & Calvete, J. J. (2001). The amino-acid sequence of the glucose/mannose-specific lectin isolated from Parkia platycephala seeds reveals three tandemly arranged jacalin-related domains. European Journal of Biochemistry, 268(16), 4414–4422.

  • Meagher, J. L., Winter, H. C., Ezell, P., Goldstein, I. J., & Stuckey, J. A. (2005). Crystal structure of banana lectin reveals a novel second sugar binding site. Glycobiology, 15(10), 1033–1042.

  • Mitchell, A. L., Attwood, T. K., Babbitt, P. C., Blum, M., Bork, P., Bridge, A., Brown, S. D., Chang, H.-Y., El-Gebali, S., Fraser, M. I., Gough, J., Haft, D. R., Huang, H., Letunic, I., Lopez, R., Luciani, A., Madeira, F., Marchler-Bauer, A., Mi, H., … Finn, R. D. (2019). InterPro in 2019: Improving coverage, classification and access to protein sequence annotations. Nucleic Acids Research, 47(D1), D351–D360.

  • Moraes Filho, R. M., Rossiter, J. G., Cavalcanti Junior, E. A., & Martins, L. S. S. (2017). In silico comparative analysis of legume lectins. Journal of Genetics and Genomes, 1(1), 1000103.

  • Naithani, S., Komath, S. S., Nonomura, A., & Govindjee, G. (2021). Plant lectins and their many roles: Carbohydrate-binding and beyond. Journal of Plant Physiology, 266, 153531.

  • Pereira, P. R., Winter, H. C., Verícimo, M. A., Meagher, J. L., Stuckey, J. A., Goldstein, I. J., Paschoalin, V. M. F., & Silva, J. T. (2015). Structural analysis and binding properties of isoforms of tarin, the GNA-related lectin from Colocasia esculenta. Biochimica et Biophysica Acta - Proteins and Proteomics, 1854(1), 20–30.

  • Peumans, W. J., & Van Damme, E. J. M. (1995). Lectins as plant defense proteins. Plant Physiology, 109(2), 347–352.

  • Quiroga, A. V., Barrio, D. A., & Añón, M. C. (2015). Amaranth lectin presents potential antitumor properties. LWT - Food Science and Technology, 60(1), 478–485.

  • Raval, S., Gowda, S. B., Singh, D. D., & Chandra, N. R. (2004). A database analysis of jacalin-like lectins: Sequence-structure-function relationships. Glycobiology, 14(12), 1247–1263.

  • Rinderle, S. J., Goldstein, I. J., Matta, K. L., & Ratcliffe, R. M. (1989). Isolation and characterization of amaranthin, a lectin present in the seeds of Amaranthus caudatus, that recognizes the T- (or cryptic T)-antigen. Journal of Biological Chemistry, 264(27), 16123–16131.

  • Ryva, B., Zhang, K., Asthana, A., Wong, D., Vicioso, Y., & Parameswaran, R. (2019). Wheat germ agglutinin as a potential therapeutic agent for leukemia. Frontiers in Oncology, 9, 100.

  • Scott, D., Abdelhakim, D., Miranda, M., Höft, R., & Cooper, H. D. (2015). Potential positive and negative impacts of components, organisms and products resulting from synthetic biology techniques on the conservation and sustainable use of biodiversity and associated social, economic and cultural considerations.

  • Singh, S. S., Devi, S. K., & Ng, T. B. (2014). Banana lectin: A brief review. Molecules, 19(11), 18817–18827.

  • Song, M., Xu, W., Xiang, Y., Jia, H., Zhang, L., & Ma, Z. (2014). Association of jacalin-related lectins with wheat responses to stresses revealed by transcriptional profiling. Plant Molecular Biology, 84, 95–110.

  • Srinivas, V. R., Acharya, S., Rawat, S., Sharma, V., & Surolia, A. (2000). The primary structure of the acidic lectin from winged bean (Psophocarpus tetragonolobus): Insights in carbohydrate recognition, adenine binding and quaternary association. FEBS Letters, 474(1), 76–82.

  • Swanson, M. D., Winter, H. C., Goldstein, I. J., & Markovitz, D. M. (2010). A lectin isolated from bananas is a potent inhibitor of HIV replication. Journal of Biological Chemistry, 285(12), 8646–8655.

  • Tsaneva, M., & Van Damme, E. J. M. (2020). 130 years of plant lectin research. Glycoconjugate Journal, 37, 533–551.

  • Van Damme, E. J. M. (2014). History of plant lectin research. In J. Hirabayashi (Ed.), Lectins. Methods in molecular biology (Vol. 1200, pp. 3–13). Humana Press.

  • Van Damme, E. J. M. (2022). 35 years in plant lectin research: A journey from basic science to applications in agriculture and medicine. Glycoconjugate Journal, 39, 83–97.

  • Van Damme, E. J. M., Lannoo, N., & Peumans, W. J. (2008). Plant lectins. Advances in Botanical Research, 48, 107–209.

  • Van Holle, S., de Schutter, K., Eggermont, L., Tsaneva, M., Dang, L., & Van Damme, E. (2017). Comparative study of lectin domains in model species: New insights into evolutionary dynamics. International Journal of Molecular Sciences, 18(6), 1136.

  • Van Holle, S., & Van Damme, E. J. M. (2019). Messages from the past: New insights in plant lectin evolution. Frontiers in Plant Science, 10, 36.

  • Vandenborre, G., Smagghe, G., & Van Damme, E. J. M. (2011). Plant lectins as defense proteins against phytophagous insects. Phytochemistry, 72(13), 1538–1550.

  • Wang, W., Li, Q., Wu, J., Hu, Y., Wu, G., Yu, C., Xu, K., Liu, X., Wang, Q., Huang, W., Wang, L., & Wang, Y. (2021). Lentil lectin derived from Lens culinaris exhibit broad antiviral activities against SARS-CoV-2 variants. Emerging Microbes and Infections, 10(1), 1519–1529.

  • Wright, H. T., Sandrasegaram, G., & Wright, C. S. (1991). Evolution of a family of N-acetylglucosamine binding proteins containing the disulfide-rich domain of wheat germ agglutinin. Journal of Molecular Evolution, 33(3), 283–294.

  • Xiong, J. (2006). Essential bioinformatics. Cambridge University Press.

  • Zeng, Q., Lin, F., Zeng, L., Deng, Y., & Li, L. (2019). Purification and characterization of a novel immunomodulatory lectin from Artocarpus hypargyreus Hance. International Immunopharmacology, 71, 285–294.

  • Zhao, Y., Jian, Y., Liu, Z., Liu, H., Liu, Q., Chen, C., Li, Z., Wang, L., Huang, H. H., & Zeng, C. (2017). Network analysis reveals the recognition mechanism for dimer formation of bulb-type lectins. Scientific Reports, 7, 2876.

ISSN 1511-3701

e-ISSN 2231-8542

Article ID


Download Full Article PDF

Share this article

Related Articles