Home / Regular Issue / JTAS Vol. 44 (3) Aug. 2021 / JTAS-2227-2021

 

Haplotype Analysis and Phylogeny of Oryzaephilus surinamensis Populations from Four Regions in Peninsular Malaysia

Syed Ahmad Syarifah-Zulaikha, Madihah Halim, Ameyra Zuki Aman and Salmah Yaakop

Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 3, August 2021

DOI: https://doi.org/10.47836/pjtas.44.3.04

Keywords: COI, Malaysia, mitochondrial DNA, molecular, phylogenetic analysis, storage pest

Published on: 30 August 2021

The sawtoothed grain beetle, Oryzaephilus surinamensis, is a secondary pest that damages rice products and other stored grains. Analysis based on the cytochrome oxidase subunit I (COI) sequences data, the number of haplotypes (Hap) (n), haplotype diversity (Hd), haplotype network, genetic distance, and phylogeny between O. surinamensis populations from four regions (small-scale), viz. the northern area (Seberang Perai), middle area (Klang), southern area (Pasir Gudang), and east coast (Kuantan) of Peninsular Malaysia, as model sampling locations, were obtained. A total of five haplotypes were detected in all the test populations, two shared (Haplotype 1 and Haplotype 3) and three unique haplotypes (Haplotype 2, Haplotype 4, and Haplotype 5) with haplotype diversity value, Hd = 0.6789 were recorded. Furthermore, the neighbour-joining (NJ), maximum parsimony (MP), and Bayesian inference (BI) trees showed a mixture of individuals from all regions in Peninsular Malaysia (Haplotype 1 to Haplotype 4), except Haplotype 5, which was grouped with foreign populations that inherited similar haplotype with those of the European samples. This study assumed a mixture of populations presumably due to human activities and related explicitly to the exportation and importation of rice products across regions. This information is vital for strategising the control management of this pest species to reduce rice storage losses.

  • Agrafioti, P., & Athanassiou, C. G. (2018). Insecticidal effect of contact insecticides against stored product beetle populations with different susceptibility to phosphine. Journal of Stored Product Research, 79, 9-15. https://doi.org/10.1016/j.jspr.2018.06.002

  • Ahmed, M. Z., Shatters, R. G., Ren, S. X., Jin, G. H., Mandour, M. S., & Qiu, B. L. (2009). Genetic distinctions among the Mediterranean and Chinese populations of Bemisia tabaci Q biotype and their endosymbiont Wolbachia populations.   Journal of Applied Entomology, 133(9-10), 733 ­̶ 741. https://doi.org/10.1111/j.1439-0418.2009.01442.x

  • Aman, A. Z., & Yaakop, S. (2013). Bracon hebetor Say, 1836 (Hymenoptera: Braconidae: Braconinae), a parasitoid of stored rice in Malaysia. Serangga, 18(1), 47-54.

  • Ambrose, L., Riginos, C., Cooper, R. D., Leow, K. S., Ong, W., & Beebe, N. W. (2012). Population structure, mitochondrial polyphyly and the repeated loss of human biting ability in anopheline mosquitoes from the southwest Pacific.  Molecular Ecology, 21(17), 4327­-4343. https://doi.org/10.1111%2Fj.1365-294X.2012.05690.x

  • Amzati, G. S., Pelle, R., Muhigwa, J. B. B., Kanduma, E. G., Djikeng, A., Madder, M., Kirschvink, N., & Marcotty, M. T. (2018). Mitochondrial phylogeography and population structure of the cattle tick Rhipicephalus appendiculatus in the African Great Lakes region. Parasites and Vectors, 11(1), 329. https://doi.org/10.1186/s13071-018-2904-7

  • Annan, Z., Durand, P., Ayala, F. J., Arnathau C., Awono-Ambene, P., Simard, F., Razakandrainibe, F. G., Koela, J. C., Fontenille, D., & Renaud, F. (2007). Population genetic structure of Plasmodium falciparum in the two main African vectors, Anopheles gambiae and Anopheles funestus. Proceedings of the National Academy of Sciences of the United States of America, 104(19), 7987 ­̶ 7992. https://doi.org/10.1073/pnas.0702715104

  • Athie, I., & Mills, K. A. (2005). Resistance to phosphine in stored-grain insect pests in Brazil. Brazilian Journal of Food Technology, 8(1/2), 143–147.

  • Bandelt, H. J., Forster, P., & Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37-48. https://doi.org/10.1093/oxfordjournals.molbev.a026036

  • Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(D1), D36-D42. https://doi.org/10.1093/nar/gks1195

  • Champ, B. R., & Dyte, C. E. (1976). Report of the FAO global survey of pesticide susceptibility of stored grain pests. Food and Agriculture Organization of the United Nations.

  • Cheng, S., Thinagaran, D., Mohanna, S. Z., & Noh, N. A. (2014). Haplotype-habitat associations of Coptotermes gestroi (Termitoidae: Rhinotermitidae) from mitochondrial DNA genes.  Environmental Biology, 43(4), 1105–1116. https://doi.org/10.1603/en13318

  • Collins, L. E., & Conyers, S. T. (2009). Moisture content gradient and ventilation in stored wheat affect movement and distribution of Oryzaephilus surinamensis and have implications for pest monitoring. Journal of Stored Product Research, 45(1), 32-39. https://doi.org/10.1016/j.jspr.2008.07.003

  • Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9(8), 772. https://doi.org/10.1038/nmeth.2109

  • Doorenweerd, C., San Jose, M., Barr, N., Leblanc, L., Rubinoff, D.  (2020). Highly variable COI haplotype diversity between three species of invasive pest fruit fly reflects remarkably incongruent demographic histories. Scientific Reports, 10(1), 6887. https://doi.org/10.1038/s41598-020-63973-x

  • Dyer, N. A., Lawton, S. P., Ravel, S., Choi, K. S., Lehane, M. J., Robinson, A. S., Okedi, L. M., Hall, M. J., Solano, P., & Donnelly, M. J. (2008). Molecular phylogenetics of tsetse flies (Diptera: Glossinidae) based on mitochondrial (COI, 16S, ND2) and nuclear ribosomal DNA sequences, with an emphasis on the palpalis group.  Molecular Phylogenetics and Evolution, 49(1), 227­-239. https://doi.org/10.1016/j.ympev.2008.07.011

  • Eliopoulos, P. A. (2019). Life table parameters of the parasitoid Cephalonomia tarsalis (Hymenoptera: Bethylidae) and its host the sawtoothed grain beetle Oryzaephilus surinamensis (Coleoptera: Silvanidae). Journal of Plant Protection Research, 59(4), 544-551. https://doi.org/10.24425/jppr.2019.131269

  • Fleurat-Lessard, F., & Pronier, V. (2006). Genetic differentiation at the inter and intra-specific level of stored grain insects using a simple molecular approach (RAPD). http://bru.gmprc.ksu.edu/proj/iwcspp/pdf2/9/6305.pdf

  • Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294­-299.

  • Gahukar, R. T., & Reddy, G. V. P. (2018). Management of insect pests in the production and storage of minor pulses. Annals of the Entomological Society of America, 111(4), 172-183. https://doi.org/10.1093/aesa/sax077

  • Ghazali, S. Z., Md. Zain, B. M. M., & Yaakop, S. (2014). Phylogeny of economically important insect pests that infesting several crops species in Malaysia. In AIP Conference Proceedings (Vol. 1614, No.1, pp. 707-712). American Institute of Physics. https://doi.org/10.1063/1.4895288

  • Gollner, S., Stuckas, H., Kihara, T. C., Laurent, S., Kodami, S., Arbizu, P. M. (2016). Mitochondrial DNA analyses indicate high diversity, expansive population growth and high genetic connectivity of vent copepods (Dirivultidae) across different oceans. PLOS One, 11(10), e0163776. https://doi.org/10.1371/journal.pone.0163776

  • Goodall-Copestake, W. P., Tarling, G. A., & Murphy, E. J. (2012). On the comparison of population-level estimates of haplotype and nucleotide diversity: a case study using the gene cox1 in animals. Heredity, 109(1), 50–56. https://doi.org/10.1038%2Fhdy.2012.12

  • Govindaraj, R., Mohankumar, S., Rajasekaran, B., & Mohan, S. (2014). Biology of the sawtoothed grain beetle, Oryzaephilus surinamensis (Linnaeus) on different stored products and its host associated genetic variability. http://spiru.cgahr.ksu.edu/proj/iwcspp/pdf2/11/024.pdf

  • Halim, M., Aman-Zuki, A., Mohammed, M. A., & Yaakop, S. (2017). DNA barcoding and relationships of eight ladybugs species (Coleoptera: Coccinellidae) that infesting several crops from Peninsular Malaysia. Journal of Asia-Pacific Entomology, 20(3), 814­-820. https://doi.org/10.1016/j.aspen.2017.05.009

  • Halim, M., Aman-Zuki, A., Syed-Ahmad, S. Z., Muhaimin, A. M. D., Atikah, A. R., Masri, M. M., Md.-Zain, B. M., & Yaakop, S. (2018). Exploring the abundance and DNA barcode information of eight parasitoid wasps species (Hymenoptera), the natural enemies of the important pest of oil palm, bagworm, Metisa plana (Lepidoptera: Psychidae) toward the biocontrol approach and it’s application in Malaysia. Journal of Asia-Pacific Entomology, 21(4), 1359-1365. https://doi.org/10.1016/j.aspen.2018.10.012

  • Hashem, M. Y., Ahmed, S. S., El-Mohandes, M. A., & Gharib, M. A. (2012). Susceptibility of different life stages of sawtoothed grain beetle Oryzaephilus surinamensis (L.) (Coleoptera: Silvanidae) to modified atmospheres enriched with carbon dioxide. Journal of Stored Product Research, 48, 46­-51. https://doi.org/10.1016/j.jspr.2011.09.002

  • Heaps, J. W. (Ed.), (2006). Insect management for food storage and processing (2nd ed.). AACC International.

  • Krauthammer, M., Rzhetsky, A., Morozov, P., & Friedman, C. (2000). Using BLAST for identifying gene and protein names in journal articles. Gene, 259(1-2), 245 ­̶ 252. https://doi.org/10.1016/S0378-1119(00)00431-5

  • Lee, S., Peterson, C. J., & Coats, J. R. (2003). Fumigation toxicity of monoterpenoids to several stored product insects. Journal of Stored Product Research, 39(1), 77-85. https://doi.org/10.1016/S0022-474X(02)00020-6

  • Llobera, J. R. (2002). An invitation to anthropology: the structure, evolution and cultural identity of human societies. Berghahn Books.

  • Lorini, I., Collins, P. J., Daglish, G. J., Nayak, M. K., & Pavic, H. (2007). Detection and characterisation of strong resistance to phosphine in Brazilian Rhyzopertha dominica (F.) (Coleoptera: Bostrychidae). Pest Management Science, 63(4), 358–364. https://doi.org/10.1002/ps.1344

  • Mazzi, D., & Dorn, S. (2012). Movement of insect pests in agricultural landscapes. Annals of Applied Biology, 160(2), 97­-113. https://doi.org/10.1111/j.1744-7348.2012.00533.x

  • Mowery, S. V., Mullen, M. A., Campbell, J. F., & Broce, A. B. (2002). Mechanisms underlying sawtoothed grain beetle (Oryzaephilus surinamensis [L.]) (Coleoptera: Silvanidae) infestation of consumer food packaging materials. Journal of Economic Entomology, 95(6), 1333­-1336. https://doi.org/10.1603/0022-0493-95.6.1333

  • Nurul-Huda, A., & Noor-Amni, M. 2020. Morphometric characterization of Oryzaephilus surinamensis L. (Coleoptera: silvanidae) reared in different type of grains. Serangga, 25(3), 116-125.

  • Palraju, M., Paulchamy, R., & Sundaram, J. (2018). Population genetic structure and molecular diversity of Leucinodes orbonalis based on mitochondrial COI gene sequences. Mitochondrial DNA Part A, 29(8), 1231-1239. https://doi.org/10.1080/24701394.2018.1436169

  • Pauls, S. U., Nowak, C., Bálint, M., & Pfenninger, M. (2013). The impact of global climate change on genetic diversity within populations and species. Molecular Ecology, 22(4), 925-946. https://doi.org/10.1111/mec.12152

  • Ratnasingham, S., & Hebert, P. D. (2007). BOLD: The Barcode of Life Data System (httpp://www. barcodinglife. org). Molecular Ecology Notes, 7(3), 355-364. https://doi.org/10.1111%2Fj.1471-8286.2007.01678.x

  • Rees, D. P. (2004). Insects of stored products. CSIRO Publishing.

  • Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539­-542. https://doi.org/10.1093/sysbio/sys029

  • Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J. C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S. E., & Sánchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299-3302. https://doi.org/10.1093/molbev/msx248

  • Schöller, M. (2010). Biological control of stored-product insects in commodities, food processing facilities and museums. Julius-Kühn-Archiv, 425, 596-606. https://doi.org/10.5073/jka.2010.425.167.165

  • Sharaf, K., Hadid, Y., Pavlíček, T., & Eviatar, N. (2013). Local genetic population divergence in a sawtoothed grain beetle, Oryzaephilus surinamensis (L.) (Coleoptera, Cucujidae). Journal of Stored Product Research, 53, 72­-76. https://doi.org/10.1016/j.jspr.2013.03.002

  • Sole, C. L., Bastos, A. D., & Scholtz, C. H. (2008). Intraspecific patterns of mitochondrial variation in natural population fragments of a localized desert dung beetle species, Pachysoma gariepinum (Coleoptera: Scarabaeidae). Journal of Heredity, 99(5), 464 ­̶ 475. https://doi.org/10.1093/jhered/esn046

  • Sum, J. S., Lee, W. C., Amir, A., Braima, K. A., Jeffery, J., Abdul-Aziz, N. M., Fong, M. Y., & Lau, Y. L. (2014). Phylogenetic study of six species of Anopheles mosquitoes in Peninsular Malaysia based on inter-transcribed spacer region 2 (ITS2) of ribosomal DNA. Parasites and Vectors, 7(1), 309. https://doi.org/10.1186/1756-3305-7-309

  • Syarifah Zulaikha, S.A., Halim, M., Nor Atikah. A.R. & Yaakop, S. (2018). Diversity and abundance of storage pest in rice warehouses in Klang, Selangor, Malaysia. Serangga, 23(1), 89-98.

  • Trematerra, P., Throne, J. E., Fernandez, M., & Knox, R. 2012. Insect and mite pests of durum wheat. In M. Sissons, B. A. Marchylo, & M. Carcea (Eds.), Durum wheat chemistry and technology (2nd ed., pp. 73-83). AACC International, Inc.

  • Tuda, M., Kagoshima, K., Toquenaga, Y., & Arnqvist, G. (2014). Global genetic differentiation in a cosmopolitan pest of stored beans: Effects of geography, host-plant usage and anthropogenic factors. PLOS One, 9(9), e106268. https://doi.org/10.1371/journal.pone.0106268

  • Vincent, C., Weintraub, P. G., Hallman, G. J., & Fleurat-Lessard, F. (2009). Insect management with physical methods in pre- and post-harvest situations. In B. Edward, E. B. Radcliffe, W. D. Hutchison, & R. E. Cancelado, (Eds.), Integrated pest management (pp. 309-323). Cambridge University Press. https://doi.org/10.1017/CBO9780511626463.025

  • Wei, S. J., Cao, L. J., Gong, Y. J., Shi, B. C., Wang, S., Zhang, F., Guo, X. J., Wang, Y. M., & Chen, X. X. (2015). Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Molecular Ecology, 24(16), 4094­-4111. https://doi.org/10.1111/mec.13300

  • Wellenreuther, M., Sanchez-Guillen, R. A., Cordero-Rivera, A., Svensson, E. I., & Hansson, B. (2011). Environmental and climatic determinants of molecular diversity and genetic population structure in a coenagrionid damselfly. PLOS One, 66(6), e20440. https://doi.org/10.1371/journal.pone.0020440

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JTAS-2227-2021

Download Full Article PDF

Share this article

Related Articles