e-ISSN 2231-8542
ISSN 1511-3701
Sri Devi Octavia, Endang Sulistyaningsih, Valentina Dwi Suci Handayani and Rudi Hari Murti
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 1, February 2024
DOI: https://doi.org/10.47836/pjtas.47.1.08
Keywords: Amino acids, macro and micronutrients, phytohormones, supplement
Published on: 23 Febuary 2024
Intensive shallot cultivation needs high application rates of inorganic fertilizers that can cause environmental problems. Therefore, it is essential to lessen the rate of inorganic fertilizers by environmentally friendlier approaches, such as the application of biostimulants like amino acids. The present study determined the most effective dosage and application method of amino acid biostimulant to increase shallot yield and growth while using only half the amount of inorganic fertilizers. The research was arranged in a randomized complete block design with two factors and four blocks as replications. The first factor was the dose of amino acids biostimulant (0, 0.5, 1, and 2 L/ha), and the second factor was the application method (through leaves and soil). Data were observed on nitrogen (N), phosphorus (P), potassium (K), manganese (Mn), boron (B), indole acetic acid (IAA), gibberellin, zeatin, kinetin, nitrate reductase activity (NRA), chlorophyll as well as the growth and yield of shallot. The results showed that the application of amino acids biostimulants increased IAA, gibberellin, and kinetin content in both application methods. Amino acids biostimulants increased N, P, K, B, Mn, and chlorophyll. Amino acids biostimulant 1 L/ha was the best dosage to increase leaf diameter, leaf dry weight, total dry weight, number of bulbs (5.63 per plant; 44%), and productivity (16.46 tons/ha; 33.77%). The application through the leaves improved NRA, leaf area, and crop growth rate. It was indicated that amino acid biostimulant through leaves provides a useful instrument for plant growth, allowing the reduction of inorganic fertilizer without compromising crop yields.
Alfosea-Simón, M., Zavala-Gonzalez, E. A., Camara-Zapata, J. M., Martínez-Nicolás, J. J., Simón, I., Simón-Grao, S., & García-Sánchez, F. (2020). Effect of foliar application of amino acids on the salinity tolerance of tomato plants cultivated under hydroponic system. Scientia Horticulturae, 272, 109509. https://doi.org/10.1016/j.scienta.2020.109509
Al-Karaki, G. N., & Othman, Y. (2023). Effect of foliar application of amino acid biostimulants on growth, macronutrient, total phenol contents and antioxidant activity of soilless grown lettuce cultivars. South African Journal of Botany, 154, 225–231. https://doi.org/10.1016/j.sajb.2023.01.034
Anbes, T., Worku, W., & Beshir, H. M. (2018). Effects of seedling age and rates of phosphorus fertilizer on growth and yield performance of onion (Allium cepa L.) under irrigation at Alage, Central Rift Valley of Ethiopia. African Journal of Plant Science, 12(9), 215–226. https://doi.org/10.5897/AJPS2018.1694
Biru, F. N. (2015). Effect of spacing and nitrogen fertilizer on the yield and yield component of shallot (Allium ascalonium L.). Journal of Agronomy, 14(4), 220–226. https://doi.org/10.3923/ja.2015.220.226
Bulgari, R., Trivellini, A., & Ferrante, A. (2019). Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Frontiers in Plant Science, 9, 1870. https://doi.org/10.3389/fpls.2018.01870
Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8
Carillo, P., Colla, G., Fusco, G. M., Dell’Aversana, E., El-Nakhel, C., Giordano, M., Pannico, A., Cozzolino, E., Mori, M., Reynaud, H., Kyriacou, M. C., Cardarelli, M., & Rouphael, Y. (2019). Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy, 9(8), 450. https://doi.org/10.3390/agronomy9080450
Cerdán, M., Sánchez‐Sánchez, A., Jordá, J. D., Juárez, M., & Sánchez‐Andreu, J. (2013). Effect of commercial amino acids on iron nutrition of tomato plants grown under lime‐induced iron deficiency. Journal of Plant Nutrition and Soil Science, 176(6), 859–866. https://doi.org/10.1002/jpln.201200525
Coombs, J., Hall, D. O., Long, S. P., & Scurlock, J. M. O. (Eds.) (1985). Techniques in bioproductivity and photosynthesis (2nd ed.). Pergamon. https://doi.org/10.1016/C2013-0-06092-6
Desoky, E.-S. M., Elrys, A. S., Mansour, E., Eid, R. S. M., Selem, E., Rady, M. M., Ali, E. F., Mersal, Gaber. A. M., & Semida, W. M. (2021). Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Scientia Horticulturae, 288, 110340. https://doi.org/10.1016/j.scienta.2021.110340
du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
Ertani, A., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C., & Nardi, S. (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 172(2), 237–244. https://doi.org/10.1002/jpln.200800174
Francesca, S., Arena, C., Hay Mele, B., Schettini, C., Ambrosino, P., Barone, A., & Rigano, M. M. (2020). The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy, 10(3), 363. https://doi.org/10.3390/agronomy10030363
González-Fontes, A., Herrera-Rodríguez, M. B., Martín-Rejano, E. M., Navarro-Gochicoa, M. T., Rexach, J., & Camacho-Cristóbal, J. J. (2016). Root responses to boron deficiency mediated by ethylene. Frontiers in Plant Science, 6, 1103. https://doi.org/10.3389/fpls.2015.01103
Gujjar, R. S., Banyen, P., Chuekong, W., Worakan, P., Roytrakul, S., & Supaibulwatana, K. (2020). A synthetic cytokinin improves photosynthesis in rice under drought stress by modulating the abundance of proteins related to stomatal conductance, chlorophyll contents, and rubisco activity. Plants, 9(9), 1106. https://doi.org/10.3390/plants9091106
Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U. (2015). The use of biostimulants for enhancing nutrient uptake. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 130, pp. 141–174). Academic Press. https://doi.org/10.1016/bs.agron.2014.10.001
Jaworski, E. G. (1971). Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications, 43(6), 1274–1279. https://doi.org/10.1016/S0006-291X(71)80010-4
Jiku, M. A. S., Alimuzzaman, M., Singha, A., Rahaman, M. A., Ganapati, R. K., Alam, M. A., & Sinha, S. R. (2020). Response and productivity of garlic (Allium sativum L.) by different levels of potassium fertilizer in farm soils. Bulletin of the National Research Centre, 44, 9. https://doi.org/10.1186/s42269-020-0267-7
Jones, D. L., Kielland, K., Sinclair, F. L., Dahlgren, R. A., Newsham, K. K., Farrar, J. F., & Murphy, D. V. (2009). Soil organic nitrogen mineralization across a global latitudinal gradient. Global Biogeochemical Cycles, 23, Gb1016. https://doi.org/10.1029/2008GB003250
Juhaszova, M., Kobrinsky, E., Zorov, D. B., Nuss, B. H., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M. A., Cortassa, S., & Sollott, S. J. (2019). ATP synthase K+-and H+-flux drive ATP synthesis and enable mitochondrial K+-uniporter function. bioRxiv, 355776. https://doi.org/https://doi.org/10.1101/355776
Kemal, Y. O. (2013). Effects of irrigation and nitrogen levels on bulb yield, nitrogen uptake and water use efficiency of shallot (Allium cepa var. ascalonicum Baker). African Journal of Agricultural Research, 8(37), 4637–4643. https://doi.org/10.5897/AJAR12013.6737
Khan, S., Yu, H., Li, Q., Gao, Y., Sallam, B. N., Wang, H., Liu, P., & Jiang, W. (2019). Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy, 9(5), 266. https://doi.org/10.3390/agronomy9050266
Klokić, I., Koleška, I., Hasanagić, D., Murtić, S., Bosančić, B., & Todorović, V. (2020). Biostimulants’ influence on tomato fruit characteristics at conventional and low-input NPK regime. Acta Agriculturae Scandinavica, Section B — Soil and Plant Science, 70(3), 233–240. https://doi.org/10.1080/09064710.2019.1711156
Kocira, S. (2019). Effect of amino acid biostimulant on the yield and nutraceutical potential of soybean. Chilean Journal of Agricultural Research, 79(1), 17–25. https://doi.org/10.4067/S0718-58392019000100017
Koleška, I., Hasanagić, D., Todorović, V., Murtić, S., Klokić, I., Parađiković, N., & Kukavica, B. (2017). Biostimulant prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition. Journal of Plant Interactions, 12(1), 209–218. https://doi.org/10.1080/17429145.2017.1319503
Kou, E., Huang, X., Zhu, Y., Su, W., Liu, H., Sun, G., Chen, R., Hao, Y., & Song, S. (2021). Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage. Scientific Reports, 11, 3976. https://doi.org/10.1038/s41598-021-83519-z
Kunicki, E., Grabowska, A., Sękara, A., & Wojciechowska, R. (2010). The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Horticulturae, 22(2), 9–13. https://doi.org/10.2478/fhort-2013-0153
Li, Q., Liu, Y., Pan, Z., Xie, S., & Peng, S. (2016). Boron deficiency alters root growth and development and interacts with auxin metabolism by influencing the expression of auxin synthesis and transport genes. Biotechnology and Biotechnological Equipment, 30(4), 661–668. https://doi.org/10.1080/13102818.2016.1166985
Linskens, H.-F., & Jackson, J. F. (Eds.). (1987). High performance liquid chromatography in plant sciences (1st ed., Vol. 5). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-82951-2
Liu, H., Deng, R., Huang, C., Cheng, Z., & Meng, H. (2019). Exogenous gibberellins alter morphology and nutritional traits of garlic (Allium sativum L.) bulb. Scientia Horticulturae, 246, 298–306. https://doi.org/10.1016/j.scienta.2018.11.003
Mannino, G., Campobenedetto, C., Vigliante, I., Contartese, V., Gentile, C., & Bertea, C. M. (2020). The application of a plant biostimulant based on seaweed and yeast extract improved tomato fruit development and quality. Biomolecules, 10(12), 1662. https://doi.org/10.3390/biom10121662
Miller, A. J., Fan, X., Shen, Q., & Smith, S. J. (2007). Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Journal of Experimental Botany, 59(1), 111–119. https://doi.org/10.1093/jxb/erm208
Mohammadipour, N., & Souri, M. K. (2019). Beneficial effects of glycine on growth and leaf nutrient concentrations of coriander (Coriandrum sativum) plants. Journal of Plant Nutrition, 42(14), 1637–1644. https://doi.org/10.1080/01904167.2019.1628985
Mola, I. D., Cozzolino, E., Ottaiano, L., Nocerino, S., Rouphael, Y., Colla, G., El-Nakhel, C., & Mori, M. (2020). Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and lamb’s lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based biostimulant application. Agronomy, 10(2), 278. https://doi.org/10.3390/agronomy10020278
Moormann, J., Heinemann, B., & Hildebrandt, T. M. (2022). News about amino acid metabolism in plant–microbe interactions. Trends in Biochemical Sciences, 47(10), 839–850. https://doi.org/10.1016/j.tibs.2022.07.001
Mustafa, A., Imran, M., Ashraf, M., & Mahmood, K. (2018). Perspectives of using L-tryptophan for improving productivity of agricultural crops: A review. Pedosphere, 28(1), 16–34. https://doi.org/10.1016/S1002-0160(18)60002-5
Navarro‐León, E., López‐Moreno, F. J., Borda, E., Marín, C., Sierras, N., Blasco, B., & Ruiz, J. M. (2022). Effect of L‐amino acid‐based biostimulants on nitrogen use efficiency (NUE) in lettuce plants. Journal of the Science of Food and Agriculture, 102(15), 7098–7106. https://doi.org/10.1002/jsfa.12071
Ning, C.-C., Gao, P.-D, Wang, B.-Q., Lin, W.-P., Jiang, N.-H., & Cai, K.-Z. (2017). Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of Integrative Agriculture, 16(8), 1819–1831. https://doi.org/10.1016/S2095-3119(16)61476-4
Noroozlo, Y. A., Souri, M. K., & Delshad, M. (2019). Effects of soil application of amino acids, ammonium, and nitrate on nutrient accumulation and growth characteristics of sweet basil. Communications in Soil Science and Plant Analysis, 50(22), 2864–2872. https://doi.org/10.1080/00103624.2019.1689249
Noroozlo, Y. A., Souri, M. K., & Delshad, M. (2020). Effects of foliar application of glycine and glutamine amino acids on growth and quality of sweet basil. Advances in Horticultural Science, 33(4), 495–501. https://doi.org/https://doi.org/10.13128/ahsc-8127
Pangestuti, R., Sulistyaningsih, E., Kurniasih, B., & Murti, R. H. (2022). Agregasi umbi dan produktivitas bawang merah (Allium cepa L. agregatum group) asal biji [Bulb aggregation and productivity of shallot (Allium cepa L. agregatum group) from seeds] [Doctoral dissertation, Universitas Gadjah Mada]. Perpustakaan Universitas Gadjah Mada. http://etd.repository.ugm.ac.id/penelitian/detail/218787
Parađiković, N., Vinković, T., Vinković Vrček, I., Žuntar, I., Bojić, M., & Medić-Šarić, M. (2011). Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annuum L.) plants. Journal of the Science of Food and Agriculture, 91(12), 2146–2152. https://doi.org/10.1002/jsfa.4431
Popko, M., Michalak, I., Wilk, R., Gramza, M., Chojnacka, K., & Górecki, H. (2018). Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules, 23(2), 470. https://doi.org/10.3390/molecules23020470
Sadak, M. S., Abdelhamid, M. T., & Schimidhalter, U. (2014). Effect of foliar application of amino acids on plant yield and physiological parameters in bean plants irrigated with seawater. Acta Biológica Colombiana, 20(1), 140–152. https://doi.org/10.15446/abc.v20n1.42865
Shafie, F., Bayat, H., Aminifard, M. H., & Daghighi, S. (2021). Biostimulant effects of seaweed extract and amino acids on growth, antioxidants, and nutrient content of yarrow (Achillea millefolium L.) in the field and greenhouse conditions. Communications in Soil Science and Plant Analysis, 52(9), 964–975. https://doi.org/10.1080/00103624.2021.1872596
Shahi, S., & Srivastava, M. (2018). Influence of foliar application of manganese on growth, pigment content, and nitrate reductase activity of Vigna radiata (L.) R. Wilczek under salinity. Journal of Plant Nutrition, 41(11), 1397–1404. https://doi.org/10.1080/01904167.2018.1454470
Sharma, H. S. S., Fleming, C., Selby, C., Rao, J. R., & Martin, T. (2014). Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26, 465–490. https://doi.org/10.1007/s10811-013-0101-9
Sheng, Y., Cheng, H., Wang, L., Shen, J., Tang, M., Liang, M., Zhang, K., Zhang, H., Kong, Q., Yu, M., & Song, Z. (2020). Foliar spraying with compound amino acid-iron fertilizer increases leaf fresh weight, photosynthesis, and Fe-S cluster gene expression in peach (Prunus persica (L.) Batsch). BioMed Research International, 2020, 2854795. https://doi.org/10.1155/2020/2854795
Souri, M. K. (2016). Aminochelate fertilizers: The new approach to the old problem; A review. Open Agriculture, 1(1), 118–123. https://doi.org/10.1515/opag-2016-0016
Souri, M. K., & Bakhtiarizade, M. (2019). Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Scientia Horticulturae, 243, 472–476. https://doi.org/10.1016/j.scienta.2018.08.056
Souri, M. K., & Hatamian, M. (2019). Aminochelates in plant nutrition: A review. Journal of Plant Nutrition, 42(1), 67–78. https://doi.org/10.1080/01904167.2018.1549671
Souri, M. K., & Sooraki, F. Y. (2019). Benefits of organic fertilizers spray on growth quality of chili pepper seedlings under cool temperature. Journal of Plant Nutrition, 42(6), 650–656. https://doi.org/10.1080/01904167.2019.1568461
Souri, M. K., Naiji, M., & Aslani, M. (2018). Effect of Fe-glycine aminochelate on pod quality and iron concentrations of bean (Phaseolus vulgaris L.) under lime soil conditions. Communications in Soil Science and Plant Analysis, 49(2), 215–224. https://doi.org/10.1080/00103624.2017.1421655
Souri, M. K., Naiji, M., & Kianmehr, M. H. (2019). Nitrogen release dynamics of a slow release urea pellet and its effect on growth, yield, and nutrient uptake of sweet basil (Ocimum basilicum L.). Journal of Plant Nutrition, 42(6), 604–614. https://doi.org/10.1080/01904167.2019.1568460
Souri, M. K., Sooraki, F. Y., & Moghadamyar, M. (2017). Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer. Horticulture, Environment, and Biotechnology, 58, 530–536. https://doi.org/10.1007/s13580-017-0349-0
Tadros, M. J., Omari, H. J., & Turk, M. A. (2019). The morphological, physiological and biochemical responses of sweet corn to foliar application of amino acids biostimulants sprayed at three growth stages. Australian Journal of Crop Science, 13(3), 412–417. https://doi.org/10.21475/ajcs.19.13.03.p1335
Tarasevičienė, Ž., Velička, A., & Paulauskienė, A. (2021). Impact of foliar application of amino acids on total phenols, phenolic acids content of different mints varieties under the field condition. Plants, 10(3), 599. https://doi.org/10.3390/plants10030599
Teixeira, W. F., Fagan, E. B., Soares, L. H., Soares, J. N., Reichardt, K., & Neto, D. D. (2018). Seed and foliar application of amino acids improve variables of nitrogen metabolism and productivity in soybean crop. Frontiers in Plant Science, 9, 396. https://doi.org/10.3389/fpls.2018.00396
Tränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431. https://doi.org/10.1111/ppl.12747
Tsouvaltzis, P., Kasampali, D. S., Aktsoglou, D. C., Barbayiannis, N., & Siomos, A. S. (2020). Effect of reduced nitrogen and supplemented amino acids nutrient solution on the nutritional quality of baby green and red lettuce grown in a floating system. Agronomy, 10(7), 922. https://doi.org/10.3390/agronomy10070922
Tyagi, J., Ahmad, S., & Malik, M. (2022). Nitrogenous fertilizers: Impact on environment sustainability, mitigation strategies, and challenges. International Journal of Environmental Science and Technology, 19, 11649–11672. https://doi.org/10.1007/s13762-022-04027-9
Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049
Yue, K., Lingling, L., Xie, J., Coulter, J. A., & Luo, Z. (2021). Synthesis and regulation of auxin and abscisic acid in maize. Plant Signaling and Behavior, 16(7), 1891756. https://doi.org/10.1080/15592324.2021.1891756
Zhang, X., Huang, G., Bian, X., & Zhao, Q. (2013). Effects of nitrogen fertilization and root interaction on the agronomic traits of intercropped maize, and the quantity of microorganisms and activity of enzymes in the rhizosphere. Plant and Soil, 368, 407–417. https://doi.org/10.1007/s11104-012-1528-5
ISSN 1511-3701
e-ISSN 2231-8542