Home / Regular Issue / JTAS Vol. 47 (1) Feb. 2024 / JTAS-2808-2023

 

Growth and Yield of Shallot (Allium cepa L. Aggregatum Group) with Application of Amino Acid Biostimulant Dosages

Sri Devi Octavia, Endang Sulistyaningsih, Valentina Dwi Suci Handayani and Rudi Hari Murti

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 1, February 2024

DOI: https://doi.org/10.47836/pjtas.47.1.08

Keywords: Amino acids, macro and micronutrients, phytohormones, supplement

Published on: 23 Febuary 2024

Intensive shallot cultivation needs high application rates of inorganic fertilizers that can cause environmental problems. Therefore, it is essential to lessen the rate of inorganic fertilizers by environmentally friendlier approaches, such as the application of biostimulants like amino acids. The present study determined the most effective dosage and application method of amino acid biostimulant to increase shallot yield and growth while using only half the amount of inorganic fertilizers. The research was arranged in a randomized complete block design with two factors and four blocks as replications. The first factor was the dose of amino acids biostimulant (0, 0.5, 1, and 2 L/ha), and the second factor was the application method (through leaves and soil). Data were observed on nitrogen (N), phosphorus (P), potassium (K), manganese (Mn), boron (B), indole acetic acid (IAA), gibberellin, zeatin, kinetin, nitrate reductase activity (NRA), chlorophyll as well as the growth and yield of shallot. The results showed that the application of amino acids biostimulants increased IAA, gibberellin, and kinetin content in both application methods. Amino acids biostimulants increased N, P, K, B, Mn, and chlorophyll. Amino acids biostimulant 1 L/ha was the best dosage to increase leaf diameter, leaf dry weight, total dry weight, number of bulbs (5.63 per plant; 44%), and productivity (16.46 tons/ha; 33.77%). The application through the leaves improved NRA, leaf area, and crop growth rate. It was indicated that amino acid biostimulant through leaves provides a useful instrument for plant growth, allowing the reduction of inorganic fertilizer without compromising crop yields.

  • Alfosea-Simón, M., Zavala-Gonzalez, E. A., Camara-Zapata, J. M., Martínez-Nicolás, J. J., Simón, I., Simón-Grao, S., & García-Sánchez, F. (2020). Effect of foliar application of amino acids on the salinity tolerance of tomato plants cultivated under hydroponic system. Scientia Horticulturae, 272, 109509. https://doi.org/10.1016/j.scienta.2020.109509

  • Al-Karaki, G. N., & Othman, Y. (2023). Effect of foliar application of amino acid biostimulants on growth, macronutrient, total phenol contents and antioxidant activity of soilless grown lettuce cultivars. South African Journal of Botany, 154, 225–231. https://doi.org/10.1016/j.sajb.2023.01.034

  • Anbes, T., Worku, W., & Beshir, H. M. (2018). Effects of seedling age and rates of phosphorus fertilizer on growth and yield performance of onion (Allium cepa L.) under irrigation at Alage, Central Rift Valley of Ethiopia. African Journal of Plant Science, 12(9), 215–226. https://doi.org/10.5897/AJPS2018.1694

  • Biru, F. N. (2015). Effect of spacing and nitrogen fertilizer on the yield and yield component of shallot (Allium ascalonium L.). Journal of Agronomy, 14(4), 220–226. https://doi.org/10.3923/ja.2015.220.226

  • Bulgari, R., Trivellini, A., & Ferrante, A. (2019). Effects of two doses of organic extract-based biostimulant on greenhouse lettuce grown under increasing NaCl concentrations. Frontiers in Plant Science, 9, 1870. https://doi.org/10.3389/fpls.2018.01870

  • Calvo, P., Nelson, L., & Kloepper, J. W. (2014). Agricultural uses of plant biostimulants. Plant and Soil, 383, 3–41. https://doi.org/10.1007/s11104-014-2131-8

  • Carillo, P., Colla, G., Fusco, G. M., Dell’Aversana, E., El-Nakhel, C., Giordano, M., Pannico, A., Cozzolino, E., Mori, M., Reynaud, H., Kyriacou, M. C., Cardarelli, M., & Rouphael, Y. (2019). Morphological and physiological responses induced by protein hydrolysate-based biostimulant and nitrogen rates in greenhouse spinach. Agronomy, 9(8), 450. https://doi.org/10.3390/agronomy9080450

  • Cerdán, M., Sánchez‐Sánchez, A., Jordá, J. D., Juárez, M., & Sánchez‐Andreu, J. (2013). Effect of commercial amino acids on iron nutrition of tomato plants grown under lime‐induced iron deficiency. Journal of Plant Nutrition and Soil Science, 176(6), 859–866. https://doi.org/10.1002/jpln.201200525

  • Coombs, J., Hall, D. O., Long, S. P., & Scurlock, J. M. O. (Eds.) (1985). Techniques in bioproductivity and photosynthesis (2nd ed.). Pergamon. https://doi.org/10.1016/C2013-0-06092-6

  • Desoky, E.-S. M., Elrys, A. S., Mansour, E., Eid, R. S. M., Selem, E., Rady, M. M., Ali, E. F., Mersal, Gaber. A. M., & Semida, W. M. (2021). Application of biostimulants promotes growth and productivity by fortifying the antioxidant machinery and suppressing oxidative stress in faba bean under various abiotic stresses. Scientia Horticulturae, 288, 110340. https://doi.org/10.1016/j.scienta.2021.110340

  • du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021

  • Ertani, A., Cavani, L., Pizzeghello, D., Brandellero, E., Altissimo, A., Ciavatta, C., & Nardi, S. (2009). Biostimulant activity of two protein hydrolyzates in the growth and nitrogen metabolism of maize seedlings. Journal of Plant Nutrition and Soil Science, 172(2), 237–244. https://doi.org/10.1002/jpln.200800174

  • Francesca, S., Arena, C., Hay Mele, B., Schettini, C., Ambrosino, P., Barone, A., & Rigano, M. M. (2020). The use of a plant-based biostimulant improves plant performances and fruit quality in tomato plants grown at elevated temperatures. Agronomy, 10(3), 363. https://doi.org/10.3390/agronomy10030363

  • González-Fontes, A., Herrera-Rodríguez, M. B., Martín-Rejano, E. M., Navarro-Gochicoa, M. T., Rexach, J., & Camacho-Cristóbal, J. J. (2016). Root responses to boron deficiency mediated by ethylene. Frontiers in Plant Science, 6, 1103. https://doi.org/10.3389/fpls.2015.01103

  • Gujjar, R. S., Banyen, P., Chuekong, W., Worakan, P., Roytrakul, S., & Supaibulwatana, K. (2020). A synthetic cytokinin improves photosynthesis in rice under drought stress by modulating the abundance of proteins related to stomatal conductance, chlorophyll contents, and rubisco activity. Plants, 9(9), 1106. https://doi.org/10.3390/plants9091106

  • Halpern, M., Bar-Tal, A., Ofek, M., Minz, D., Muller, T., & Yermiyahu, U. (2015). The use of biostimulants for enhancing nutrient uptake. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 130, pp. 141–174). Academic Press. https://doi.org/10.1016/bs.agron.2014.10.001

  • Jaworski, E. G. (1971). Nitrate reductase assay in intact plant tissues. Biochemical and Biophysical Research Communications, 43(6), 1274–1279. https://doi.org/10.1016/S0006-291X(71)80010-4

  • Jiku, M. A. S., Alimuzzaman, M., Singha, A., Rahaman, M. A., Ganapati, R. K., Alam, M. A., & Sinha, S. R. (2020). Response and productivity of garlic (Allium sativum L.) by different levels of potassium fertilizer in farm soils. Bulletin of the National Research Centre, 44, 9. https://doi.org/10.1186/s42269-020-0267-7

  • Jones, D. L., Kielland, K., Sinclair, F. L., Dahlgren, R. A., Newsham, K. K., Farrar, J. F., & Murphy, D. V. (2009). Soil organic nitrogen mineralization across a global latitudinal gradient. Global Biogeochemical Cycles, 23, Gb1016. https://doi.org/10.1029/2008GB003250

  • Juhaszova, M., Kobrinsky, E., Zorov, D. B., Nuss, B. H., Yaniv, Y., Fishbein, K. W., de Cabo, R., Montoliu, L., Gabelli, S. B., Aon, M. A., Cortassa, S., & Sollott, S. J. (2019). ATP synthase K+-and H+-flux drive ATP synthesis and enable mitochondrial K+-uniporter function. bioRxiv, 355776. https://doi.org/https://doi.org/10.1101/355776

  • Kemal, Y. O. (2013). Effects of irrigation and nitrogen levels on bulb yield, nitrogen uptake and water use efficiency of shallot (Allium cepa var. ascalonicum Baker). African Journal of Agricultural Research, 8(37), 4637–4643. https://doi.org/10.5897/AJAR12013.6737

  • Khan, S., Yu, H., Li, Q., Gao, Y., Sallam, B. N., Wang, H., Liu, P., & Jiang, W. (2019). Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability. Agronomy, 9(5), 266. https://doi.org/10.3390/agronomy9050266

  • Klokić, I., Koleška, I., Hasanagić, D., Murtić, S., Bosančić, B., & Todorović, V. (2020). Biostimulants’ influence on tomato fruit characteristics at conventional and low-input NPK regime. Acta Agriculturae Scandinavica, Section B — Soil and Plant Science, 70(3), 233–240. https://doi.org/10.1080/09064710.2019.1711156

  • Kocira, S. (2019). Effect of amino acid biostimulant on the yield and nutraceutical potential of soybean. Chilean Journal of Agricultural Research, 79(1), 17–25. https://doi.org/10.4067/S0718-58392019000100017

  • Koleška, I., Hasanagić, D., Todorović, V., Murtić, S., Klokić, I., Parađiković, N., & Kukavica, B. (2017). Biostimulant prevents yield loss and reduces oxidative damage in tomato plants grown on reduced NPK nutrition. Journal of Plant Interactions, 12(1), 209–218. https://doi.org/10.1080/17429145.2017.1319503

  • Kou, E., Huang, X., Zhu, Y., Su, W., Liu, H., Sun, G., Chen, R., Hao, Y., & Song, S. (2021). Crosstalk between auxin and gibberellin during stalk elongation in flowering Chinese cabbage. Scientific Reports, 11, 3976. https://doi.org/10.1038/s41598-021-83519-z

  • Kunicki, E., Grabowska, A., Sękara, A., & Wojciechowska, R. (2010). The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Horticulturae, 22(2), 9–13. https://doi.org/10.2478/fhort-2013-0153

  • Li, Q., Liu, Y., Pan, Z., Xie, S., & Peng, S. (2016). Boron deficiency alters root growth and development and interacts with auxin metabolism by influencing the expression of auxin synthesis and transport genes. Biotechnology and Biotechnological Equipment, 30(4), 661–668. https://doi.org/10.1080/13102818.2016.1166985

  • Linskens, H.-F., & Jackson, J. F. (Eds.). (1987). High performance liquid chromatography in plant sciences (1st ed., Vol. 5). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-82951-2

  • Liu, H., Deng, R., Huang, C., Cheng, Z., & Meng, H. (2019). Exogenous gibberellins alter morphology and nutritional traits of garlic (Allium sativum L.) bulb. Scientia Horticulturae, 246, 298–306. https://doi.org/10.1016/j.scienta.2018.11.003

  • Mannino, G., Campobenedetto, C., Vigliante, I., Contartese, V., Gentile, C., & Bertea, C. M. (2020). The application of a plant biostimulant based on seaweed and yeast extract improved tomato fruit development and quality. Biomolecules, 10(12), 1662. https://doi.org/10.3390/biom10121662

  • Miller, A. J., Fan, X., Shen, Q., & Smith, S. J. (2007). Amino acids and nitrate as signals for the regulation of nitrogen acquisition. Journal of Experimental Botany, 59(1), 111–119. https://doi.org/10.1093/jxb/erm208

  • Mohammadipour, N., & Souri, M. K. (2019). Beneficial effects of glycine on growth and leaf nutrient concentrations of coriander (Coriandrum sativum) plants. Journal of Plant Nutrition, 42(14), 1637–1644. https://doi.org/10.1080/01904167.2019.1628985

  • Mola, I. D., Cozzolino, E., Ottaiano, L., Nocerino, S., Rouphael, Y., Colla, G., El-Nakhel, C., & Mori, M. (2020). Nitrogen use and uptake efficiency and crop performance of baby spinach (Spinacia oleracea L.) and lamb’s lettuce (Valerianella locusta L.) grown under variable sub-optimal N regimes combined with plant-based biostimulant application. Agronomy, 10(2), 278. https://doi.org/10.3390/agronomy10020278

  • Moormann, J., Heinemann, B., & Hildebrandt, T. M. (2022). News about amino acid metabolism in plant–microbe interactions. Trends in Biochemical Sciences, 47(10), 839–850. https://doi.org/10.1016/j.tibs.2022.07.001

  • Mustafa, A., Imran, M., Ashraf, M., & Mahmood, K. (2018). Perspectives of using L-tryptophan for improving productivity of agricultural crops: A review. Pedosphere, 28(1), 16–34. https://doi.org/10.1016/S1002-0160(18)60002-5

  • Navarro‐León, E., López‐Moreno, F. J., Borda, E., Marín, C., Sierras, N., Blasco, B., & Ruiz, J. M. (2022). Effect of L‐amino acid‐based biostimulants on nitrogen use efficiency (NUE) in lettuce plants. Journal of the Science of Food and Agriculture, 102(15), 7098–7106. https://doi.org/10.1002/jsfa.12071

  • Ning, C.-C., Gao, P.-D, Wang, B.-Q., Lin, W.-P., Jiang, N.-H., & Cai, K.-Z. (2017). Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. Journal of Integrative Agriculture, 16(8), 1819–1831. https://doi.org/10.1016/S2095-3119(16)61476-4

  • Noroozlo, Y. A., Souri, M. K., & Delshad, M. (2019). Effects of soil application of amino acids, ammonium, and nitrate on nutrient accumulation and growth characteristics of sweet basil. Communications in Soil Science and Plant Analysis, 50(22), 2864–2872. https://doi.org/10.1080/00103624.2019.1689249

  • Noroozlo, Y. A., Souri, M. K., & Delshad, M. (2020). Effects of foliar application of glycine and glutamine amino acids on growth and quality of sweet basil. Advances in Horticultural Science, 33(4), 495–501. https://doi.org/https://doi.org/10.13128/ahsc-8127

  • Pangestuti, R., Sulistyaningsih, E., Kurniasih, B., & Murti, R. H. (2022). Agregasi umbi dan produktivitas bawang merah (Allium cepa L. agregatum group) asal biji [Bulb aggregation and productivity of shallot (Allium cepa L. agregatum group) from seeds] [Doctoral dissertation, Universitas Gadjah Mada]. Perpustakaan Universitas Gadjah Mada. http://etd.repository.ugm.ac.id/penelitian/detail/218787

  • Parađiković, N., Vinković, T., Vinković Vrček, I., Žuntar, I., Bojić, M., & Medić-Šarić, M. (2011). Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annuum L.) plants. Journal of the Science of Food and Agriculture, 91(12), 2146–2152. https://doi.org/10.1002/jsfa.4431

  • Popko, M., Michalak, I., Wilk, R., Gramza, M., Chojnacka, K., & Górecki, H. (2018). Effect of the new plant growth biostimulants based on amino acids on yield and grain quality of winter wheat. Molecules, 23(2), 470. https://doi.org/10.3390/molecules23020470

  • Sadak, M. S., Abdelhamid, M. T., & Schimidhalter, U. (2014). Effect of foliar application of amino acids on plant yield and physiological parameters in bean plants irrigated with seawater. Acta Biológica Colombiana, 20(1), 140–152. https://doi.org/10.15446/abc.v20n1.42865

  • Shafie, F., Bayat, H., Aminifard, M. H., & Daghighi, S. (2021). Biostimulant effects of seaweed extract and amino acids on growth, antioxidants, and nutrient content of yarrow (Achillea millefolium L.) in the field and greenhouse conditions. Communications in Soil Science and Plant Analysis, 52(9), 964–975. https://doi.org/10.1080/00103624.2021.1872596

  • Shahi, S., & Srivastava, M. (2018). Influence of foliar application of manganese on growth, pigment content, and nitrate reductase activity of Vigna radiata (L.) R. Wilczek under salinity. Journal of Plant Nutrition, 41(11), 1397–1404. https://doi.org/10.1080/01904167.2018.1454470

  • Sharma, H. S. S., Fleming, C., Selby, C., Rao, J. R., & Martin, T. (2014). Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26, 465–490. https://doi.org/10.1007/s10811-013-0101-9

  • Sheng, Y., Cheng, H., Wang, L., Shen, J., Tang, M., Liang, M., Zhang, K., Zhang, H., Kong, Q., Yu, M., & Song, Z. (2020). Foliar spraying with compound amino acid-iron fertilizer increases leaf fresh weight, photosynthesis, and Fe-S cluster gene expression in peach (Prunus persica (L.) Batsch). BioMed Research International, 2020, 2854795. https://doi.org/10.1155/2020/2854795

  • Souri, M. K. (2016). Aminochelate fertilizers: The new approach to the old problem; A review. Open Agriculture, 1(1), 118–123. https://doi.org/10.1515/opag-2016-0016

  • Souri, M. K., & Bakhtiarizade, M. (2019). Biostimulation effects of rosemary essential oil on growth and nutrient uptake of tomato seedlings. Scientia Horticulturae, 243, 472–476. https://doi.org/10.1016/j.scienta.2018.08.056

  • Souri, M. K., & Hatamian, M. (2019). Aminochelates in plant nutrition: A review. Journal of Plant Nutrition, 42(1), 67–78. https://doi.org/10.1080/01904167.2018.1549671

  • Souri, M. K., & Sooraki, F. Y. (2019). Benefits of organic fertilizers spray on growth quality of chili pepper seedlings under cool temperature. Journal of Plant Nutrition, 42(6), 650–656. https://doi.org/10.1080/01904167.2019.1568461

  • Souri, M. K., Naiji, M., & Aslani, M. (2018). Effect of Fe-glycine aminochelate on pod quality and iron concentrations of bean (Phaseolus vulgaris L.) under lime soil conditions. Communications in Soil Science and Plant Analysis, 49(2), 215–224. https://doi.org/10.1080/00103624.2017.1421655

  • Souri, M. K., Naiji, M., & Kianmehr, M. H. (2019). Nitrogen release dynamics of a slow release urea pellet and its effect on growth, yield, and nutrient uptake of sweet basil (Ocimum basilicum L.). Journal of Plant Nutrition, 42(6), 604–614. https://doi.org/10.1080/01904167.2019.1568460

  • Souri, M. K., Sooraki, F. Y., & Moghadamyar, M. (2017). Growth and quality of cucumber, tomato, and green bean under foliar and soil applications of an aminochelate fertilizer. Horticulture, Environment, and Biotechnology, 58, 530–536. https://doi.org/10.1007/s13580-017-0349-0

  • Tadros, M. J., Omari, H. J., & Turk, M. A. (2019). The morphological, physiological and biochemical responses of sweet corn to foliar application of amino acids biostimulants sprayed at three growth stages. Australian Journal of Crop Science, 13(3), 412–417. https://doi.org/10.21475/ajcs.19.13.03.p1335

  • Tarasevičienė, Ž., Velička, A., & Paulauskienė, A. (2021). Impact of foliar application of amino acids on total phenols, phenolic acids content of different mints varieties under the field condition. Plants, 10(3), 599. https://doi.org/10.3390/plants10030599

  • Teixeira, W. F., Fagan, E. B., Soares, L. H., Soares, J. N., Reichardt, K., & Neto, D. D. (2018). Seed and foliar application of amino acids improve variables of nitrogen metabolism and productivity in soybean crop. Frontiers in Plant Science, 9, 396. https://doi.org/10.3389/fpls.2018.00396

  • Tränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431. https://doi.org/10.1111/ppl.12747

  • Tsouvaltzis, P., Kasampali, D. S., Aktsoglou, D. C., Barbayiannis, N., & Siomos, A. S. (2020). Effect of reduced nitrogen and supplemented amino acids nutrient solution on the nutritional quality of baby green and red lettuce grown in a floating system. Agronomy, 10(7), 922. https://doi.org/10.3390/agronomy10070922

  • Tyagi, J., Ahmad, S., & Malik, M. (2022). Nitrogenous fertilizers: Impact on environment sustainability, mitigation strategies, and challenges. International Journal of Environmental Science and Technology, 19, 11649–11672. https://doi.org/10.1007/s13762-022-04027-9

  • Yakhin, O. I., Lubyanov, A. A., Yakhin, I. A., & Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Frontiers in Plant Science, 7, 2049. https://doi.org/10.3389/fpls.2016.02049

  • Yue, K., Lingling, L., Xie, J., Coulter, J. A., & Luo, Z. (2021). Synthesis and regulation of auxin and abscisic acid in maize. Plant Signaling and Behavior, 16(7), 1891756. https://doi.org/10.1080/15592324.2021.1891756

  • Zhang, X., Huang, G., Bian, X., & Zhao, Q. (2013). Effects of nitrogen fertilization and root interaction on the agronomic traits of intercropped maize, and the quantity of microorganisms and activity of enzymes in the rhizosphere. Plant and Soil, 368, 407–417. https://doi.org/10.1007/s11104-012-1528-5

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2808-2023

Download Full Article PDF

Share this article

Related Articles