PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 46 (1) Feb. 2023 / JTAS-2533-2022

 

Effectiveness of Samia cynthia ricini Boisduval (Lepidoptera: Saturniidae) Cocoon Extract as UV Protectant of Bacillus thuringiensis kurstaki in Controlling Beet Armyworm Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) under Sunlight

Rahmatullah, Sukirno, Nindita Sabila Ningtyas, Aryo Seto Pandu Wiranto, Nadya Sofia Siti Sa’adah, Hipny Alwandri, Tiara Purti Arssalsabila, Asma’ and Hanindyo Adi

Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 1, February 2023

DOI: https://doi.org/10.47836/pjtas.46.1.19

Keywords: Bt, Samia, Spodoptera exigua, UV protectant

Published on: 22 Febuary 2023

Bacillus thuringiensis (Bt) is a biological agent for insect pest management. Its toxins effectively control Spodoptera exigua Hübner (Lepidoptera: Noctuidae) larvae, but it is sensitive to ultraviolet (UV) radiation from the sunlight. This study aimed to investigate the effect of sericin extract from Samia ricini Boisduval (Lepidoptera: Saturniidae) cocoons as a UV protectant for Bt after exposure under direct sunlight for 1, 2, 3, and 4 weeks. After being exposed to sunlight, the Bt formulae were tested against 20 larvae of 24 hr old, the first larval instar in the laboratory. The larval mortality was observed 72 hr after the treatment. The results indicated that the mortality of S. exigua in Bt + sericin extract treatment was significantly different compared with Bt alone. For the first week, the mortality of S. exigua in exposed Bt + sericin exposed Bt alone, unexposed (Bt + sericin, and unexposed Bt alone were 80, 61, 85, and 97%, respectively. Scanning electron microscopy analysis revealed that Bt + sericin, after being exposed to sunlight, still showed the presence of spore and crystal protein comparable to the unexposed Bt. Based on the results, sericin provides good protection against sunlight and prevents the Bt spores from light-induced damage.

  • Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 268–267. https://doi.org/10.1093/JEE%2F18.2.265A

  • Adamczyk, J. J., Greenberg, S., Armstrong, J. S., Mullins, W. J., Braxton, L. B., Lassiter, R. B., & Siebert, M. W. (2008). Evaluations of Bollgard®, Bollgard II®, and WideStrike® technologies against beet and fall armyworm larvae (Lepidoptera: Noctuidae). Florida Entomologist, 91(4), 531–536. https://doi.org/10.1653/0015-4040-91.4.531

  • Apaydin, O., Cinar, C., Turanli, F., Harsa, S., & Gunes, H. (2008). Identification and bioactivity of native strains of Bacillus thuringiensis from grain-related habitats in Turkey. Biological Control, 45(1), 21–28. https://doi.org/10.1016/j.biocontrol.2008.01.011

  • Aramwit, P., Kanokpanont, S., Nakpheng, T., & Srichana, T. (2010). The effect of sericin from various extraction methods on cell viability and collagen production. International Journal of Molecular Sciences, 11(5), 2200–2211. https://doi.org/10.3390/ijms11052200

  • Aronson, A. (2002). Sporulation and δ-endotoxin synthesis by Bacillus thuringiensis. Cellular and Molecular Life Sciences, 59(3), 417–425. https://doi.org/10.1007/s00018-002-8434-6

  • Bravo, A., Soberon, M., & Gill, S. S. (2005). Bacillus thuringiensis: Mechanisms and use. In L. I. Gilbert & S. S. Gill (Eds.), Comprehensive molecular insect science (Vol. 6, pp. 175-205). Academic Press. https://doi.org/10.1016/B0-44-451924-6/00081-8

  • Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Early, R., Godwin, J., Gomez, J., Moreno, P. G., Murphy, S. T., Oppong-Mensah, B., Phiri, N., Pratt, C., Silvestri, S., & Witt, A. (2017). Fall armyworm: Impacts and implications for Africa. Outlooks on Pest Management, 28(5), 196–201. https://doi.org/10.1564/v28_oct_02

  • Desneux, N., Decourtye, A., & Delpuech, J. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440

  • Eom, S. J., Lee, N. H., Kang, M. C., Kim, Y. H., Lim, T.-G., & Song, K.-M. (2020). Silk peptide production from whole silkworm cocoon using ultrasound and enzymatic treatment and its suppression of solar ultraviolet-induced skin inflammation. Ultrasonics Sonochemistry, 61, 104803. https://doi.org/10.1016/j.ultsonch.2019.104803

  • Finney, D. J. (1977). Estimation of the response curve in radiology and assays. Annals of the Institute of Statistical Mathematics, 29, 467–477. https://doi.org/10.1007/BF02532806

  • Gill, S. S. (1995). Mechanism of action of Bacillus thuringiensis toxins. Memorias do Instituto Oswaldo Cruz, 90(1), 69–74. https://doi.org/10.1590/S0074-02761995000100016

  • Hart, S. J., Terray, A., Leski, T. A., Arnold, J., & Stroud, R. (2006). Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis. Analytical Chemistry, 78(9), 3221–3225. https://doi.org/10.1021/ac052221z

  • Hou, W., Gao, W., Wang, D., Liu, Q., Zheng, S., & Wang, Y. (2015). The protecting effect of deoxyschisandrin and schisandrin B on HaCaT cells against UVB-induced damage. PLOS One, 10(5), e0127177. https://doi.org/10.1371/journal.pone.0127177

  • Kaur, J., Rajkhowa, R., Tsuzuki, T., Millington, K., Zhang, J., & Wang, X. (2013). Photoprotection by silk cocoons. Biomacromolecules, 14(10), 3660–3667. https://doi.org/10.1021/bm401023h

  • Khattab, M. (2013). Isolation of nucleopolyhedrovirus (NPV) from the beet armyworm Spodoptera exigua (Hübner) (SpexNPV). International Journal of Environmental Science and Engineering, 4, 75–83.

  • Kumar, J. P., & Mandal, B. B. (2019). The inhibitory effect of silk sericin against ultraviolet-induced melanogenesis and its potential use in cosmeceutics as an anti-hyperpigmentation compound. Photochemical and Photobiological Sciences, 18(10), 2497–2508. https://doi.org/10.1039/c9pp00059c

  • Liu, Y. B., Tabashnik, B. E., Moar, W. J., & Smith, R. A. (1998). Synergism between Bacillus thuringiensis spores and toxins against resistant and susceptible diamondback moths (Plutella xylostella). Applied and Environmental Microbiology, 64(4), 1385–1389. https://doi.org/10.1128/aem.64.4.1385-1389.1998

  • Lozano, E. R., Neves, P. M. O. J., Alves, L. F. A., Potrich, M., Vilas-Boas, G. F. L. T., & Monnerat, R. G. (2018). Action of natural phytosanitary products on Bacillus thuringiensis subsp. kurstaki S-1905. Bulletin of Entomological Research, 108(2), 223–231. https://doi.org/10.1017/S0007485317000670

  • Maagd, R. A., Bravo, A., & Crickmore, N. (2001). How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends in Genetics, 17(4), 193–199. https://doi.org/10.1016/S0168-9525(01)02237-5

  • Maagd, R. A., Weemen-Hendriks, M., Stiekema, W., & Bosch, D. (2000). Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Applied and Environmental Microbiology, 66(4), 1559–1563. https://doi.org/10.1128/AEM.66.4.1559-1563.2000

  • Maghsoudi, S., & Jalali, E. (2017). Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil. Scientific Reports, 7(1), 7–12. https://doi.org/10.1038/s41598-017-11080-9

  • Meissle, M., Romeis, J., & Bigler, F. (2011). Bt maize and integrated pest management - A European perspective. Pest Management Science, 67(9), 1049–1058. https://doi.org/10.1002/ps.2221

  • Ningrum, A. D., & Sumarmi, S. (2020). The extract of tea leaves (Camellia sinensis (L.) Kuntze) as protectant of Bacillus thuringiensis var. kurstaki against ultraviolet light for control of armyworm (Spodoptera litura Fab.) larvae. In AIP Conference Proceedings (Vol. 2260, No. 1, p. 030022). AIP Publishing. https://doi.org/10.1063/5.0015744

  • Rajathi, A., Pandiarajan, J., & Krishnan, M. (2010). Effect of RH-2485 on development, metamorphosis, and synthesis of major proteins in female silkworm Bombyx mori. Versita, 65(5), 903-913. https://doi.org/10.2478/s11756-010-0104-9

  • Saeed, S., Sayyed, A. H., & Ahmad, I. (2010). Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Pest Science, 83(2), 165–172. https://doi.org/10.1007/s10340-009-0283-8

  • Sansinenea, E., Salazar, F., Ramirez, M., & Ortiz, A. (2015). An ultra-violet tolerant wild-type strain of melanin-producing Bacillus thuringiensis. Jundishapur Journal of Microbiology, 8(7), e20910. https://doi.org/10.5812/jjm.20910v2

  • Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., & Dean, D. H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 775–806. https://doi.org/10.1128/mmbr.62.3.775-806.1998

  • Setlow, B., Tautvydas, K. J., & Setlow, P. (1998). Small, acid-soluble spore proteins of the α/β type do not protect the DNA in Bacillus subtilis spores against base alkylation. Applied and Environmental Microbiology, 64(5), 1958–1962. https://doi.org/10.1128/aem.64.5.1958-1962.1998

  • Shorey, H. H., & Hale, R. L. (1965). Mass-Rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology, 58(3), 522–524. https://doi.org/10.1093/jee/58.3.522

  • Silva, S. M. B., Silva-Werneck, J. O., Falcao, R., Gomes, A. C., Fragoso, R. R., Quezado, M. T., Neto, O. B. O., Aguiar, J. B., De Sa, M. F. G., Bravo, A., & Monnerat, R. G. (2004). Characterization of novel Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda and other insect pests. Journal of Applied Entomology, 128(2), 102–107. https://doi.org/10.1046/j.1439-0418.2003.00812.x

  • Sukirno, S., Lukmawati, D., Hanum, S. S. L., Ameliya, V. F., Sumarmi, S., Purwanto, H., Suparmin, S., Sudaryadi, I., Soesilohadi, R. C. H., & Aldawood, A. S. (2022). The effectiveness of Samia ricini Drury (Lepidoptera: Saturniidae) and Attacus atlas L. (Lepidoptera: Saturniidae) cocoon extracts as ultraviolet protectants of Bacillus thuringiensis for controlling Spodoptera litura Fab. (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science, 42(1), 255–260. https://doi.org/10.1007/s42690-021-00540-5

  • Sukirno, S., Tufail, M., Rasool, K. G., El Salamouny, S., Sutanto, K. D., & Aldawood, A. S. (2018). The efficacy and persistence of Spodoptera littoralis nucleopolyhedrovirus (SpliMNPV) applied in UV protectants against the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) under Saudi field conditions. Pakistan Journal of Zoology, 50(5), 1895–1902. https://doi.org/10.17582/JOURNAL.PJZ/2018.50.5.1895.1902

  • Sumarmi, S., Arlinda, M., & Sukirno, S. (2020). The effectiveness of red spinach (Amaranthus tricolor L.) and green spinach (Amaranthus hybridus L.) extracts for Bacillus thuringiensis var. kurstaki protectant against UV-B radiation for the control of armyworm (Spodoptera litura Fab.). Journal of Tropical Biodiversity and Biotechnology, 5(2), 143–148. https://doi.org/10.22146/jtbb.53004

  • Tao, S., & Wu, F. (2006). Sublethal effect of chlorpyrifos on dynamics of experimental Tetranychus cinnabarinus population. Journal of Applied Ecology, 17(7), 1351-1353.

  • Tarigan, A., Sumarmi, S., & Sukirno, S. (2020). Effectiveness of aloe (Aloe vera L.) as a protectant of Bacillus thuringiensis var kurstaki against ultraviolet light and biological control agenst of Spodoptera litura Fab. In AIP Conference Proceedings: Biological Science ICBS (Vol. 2260, No. 1, p. 030003). AIP Publishing. https://doi.org/10.1063/5.0015743

  • Taylor, J. E., & Riley, D. G. (2008). Artificial infestations of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), used to estimate an economic injury level in tomato. Crop Protection, 27(2), 268–274. https://doi.org/10.1016/j.cropro.2007.05.014

  • Zheng, S., Henken, B., Wietsma, W., Sofiari, E., Jacobsen, E., Krens, F. A., & Kik, C. (2000). Development of bio-assays and screening for resistance to beet armyworm (Spodoptera exigua Hübner) in Allium cepa L. and its wild relatives. Euphytica, 114, 77–85. https://doi.org/10.1023/A:1004089424419

  • Zhou, C., Liu, Y., Yu, W., Deng, Z., Gao, M., Liu, F., & Mu, W. (2011). Resistance of Spodoptera exigua to ten insecticides in Shandong, China. Phytoparasitica, 39(4), 315–324. https://doi.org/10.1007/s12600-011-0157-5

ISSN 1511-3701

e-ISSN 2231-8542

Article ID

JTAS-2533-2022

Download Full Article PDF

Share this article

Related Articles