e-ISSN 2231-8542
ISSN 1511-3701
Rahmatullah, Sukirno, Nindita Sabila Ningtyas, Aryo Seto Pandu Wiranto, Nadya Sofia Siti Sa’adah, Hipny Alwandri, Tiara Purti Arssalsabila, Asma’ and Hanindyo Adi
Pertanika Journal of Tropical Agricultural Science, Volume 46, Issue 1, February 2023
DOI: https://doi.org/10.47836/pjtas.46.1.19
Keywords: Bt, Samia, Spodoptera exigua, UV protectant
Published on: 22 Febuary 2023
Bacillus thuringiensis (Bt) is a biological agent for insect pest management. Its toxins effectively control Spodoptera exigua Hübner (Lepidoptera: Noctuidae) larvae, but it is sensitive to ultraviolet (UV) radiation from the sunlight. This study aimed to investigate the effect of sericin extract from Samia ricini Boisduval (Lepidoptera: Saturniidae) cocoons as a UV protectant for Bt after exposure under direct sunlight for 1, 2, 3, and 4 weeks. After being exposed to sunlight, the Bt formulae were tested against 20 larvae of 24 hr old, the first larval instar in the laboratory. The larval mortality was observed 72 hr after the treatment. The results indicated that the mortality of S. exigua in Bt + sericin extract treatment was significantly different compared with Bt alone. For the first week, the mortality of S. exigua in exposed Bt + sericin exposed Bt alone, unexposed (Bt + sericin, and unexposed Bt alone were 80, 61, 85, and 97%, respectively. Scanning electron microscopy analysis revealed that Bt + sericin, after being exposed to sunlight, still showed the presence of spore and crystal protein comparable to the unexposed Bt. Based on the results, sericin provides good protection against sunlight and prevents the Bt spores from light-induced damage.
Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18(2), 268–267. https://doi.org/10.1093/JEE%2F18.2.265A
Adamczyk, J. J., Greenberg, S., Armstrong, J. S., Mullins, W. J., Braxton, L. B., Lassiter, R. B., & Siebert, M. W. (2008). Evaluations of Bollgard®, Bollgard II®, and WideStrike® technologies against beet and fall armyworm larvae (Lepidoptera: Noctuidae). Florida Entomologist, 91(4), 531–536. https://doi.org/10.1653/0015-4040-91.4.531
Apaydin, O., Cinar, C., Turanli, F., Harsa, S., & Gunes, H. (2008). Identification and bioactivity of native strains of Bacillus thuringiensis from grain-related habitats in Turkey. Biological Control, 45(1), 21–28. https://doi.org/10.1016/j.biocontrol.2008.01.011
Aramwit, P., Kanokpanont, S., Nakpheng, T., & Srichana, T. (2010). The effect of sericin from various extraction methods on cell viability and collagen production. International Journal of Molecular Sciences, 11(5), 2200–2211. https://doi.org/10.3390/ijms11052200
Aronson, A. (2002). Sporulation and δ-endotoxin synthesis by Bacillus thuringiensis. Cellular and Molecular Life Sciences, 59(3), 417–425. https://doi.org/10.1007/s00018-002-8434-6
Bravo, A., Soberon, M., & Gill, S. S. (2005). Bacillus thuringiensis: Mechanisms and use. In L. I. Gilbert & S. S. Gill (Eds.), Comprehensive molecular insect science (Vol. 6, pp. 175-205). Academic Press. https://doi.org/10.1016/B0-44-451924-6/00081-8
Day, R., Abrahams, P., Bateman, M., Beale, T., Clottey, V., Cock, M., Colmenarez, Y., Corniani, N., Early, R., Godwin, J., Gomez, J., Moreno, P. G., Murphy, S. T., Oppong-Mensah, B., Phiri, N., Pratt, C., Silvestri, S., & Witt, A. (2017). Fall armyworm: Impacts and implications for Africa. Outlooks on Pest Management, 28(5), 196–201. https://doi.org/10.1564/v28_oct_02
Desneux, N., Decourtye, A., & Delpuech, J. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81–106. https://doi.org/10.1146/annurev.ento.52.110405.091440
Eom, S. J., Lee, N. H., Kang, M. C., Kim, Y. H., Lim, T.-G., & Song, K.-M. (2020). Silk peptide production from whole silkworm cocoon using ultrasound and enzymatic treatment and its suppression of solar ultraviolet-induced skin inflammation. Ultrasonics Sonochemistry, 61, 104803. https://doi.org/10.1016/j.ultsonch.2019.104803
Finney, D. J. (1977). Estimation of the response curve in radiology and assays. Annals of the Institute of Statistical Mathematics, 29, 467–477. https://doi.org/10.1007/BF02532806
Gill, S. S. (1995). Mechanism of action of Bacillus thuringiensis toxins. Memorias do Instituto Oswaldo Cruz, 90(1), 69–74. https://doi.org/10.1590/S0074-02761995000100016
Hart, S. J., Terray, A., Leski, T. A., Arnold, J., & Stroud, R. (2006). Discovery of a significant optical chromatographic difference between spores of Bacillus anthracis and its close relative, Bacillus thuringiensis. Analytical Chemistry, 78(9), 3221–3225. https://doi.org/10.1021/ac052221z
Hou, W., Gao, W., Wang, D., Liu, Q., Zheng, S., & Wang, Y. (2015). The protecting effect of deoxyschisandrin and schisandrin B on HaCaT cells against UVB-induced damage. PLOS One, 10(5), e0127177. https://doi.org/10.1371/journal.pone.0127177
Kaur, J., Rajkhowa, R., Tsuzuki, T., Millington, K., Zhang, J., & Wang, X. (2013). Photoprotection by silk cocoons. Biomacromolecules, 14(10), 3660–3667. https://doi.org/10.1021/bm401023h
Khattab, M. (2013). Isolation of nucleopolyhedrovirus (NPV) from the beet armyworm Spodoptera exigua (Hübner) (SpexNPV). International Journal of Environmental Science and Engineering, 4, 75–83.
Kumar, J. P., & Mandal, B. B. (2019). The inhibitory effect of silk sericin against ultraviolet-induced melanogenesis and its potential use in cosmeceutics as an anti-hyperpigmentation compound. Photochemical and Photobiological Sciences, 18(10), 2497–2508. https://doi.org/10.1039/c9pp00059c
Liu, Y. B., Tabashnik, B. E., Moar, W. J., & Smith, R. A. (1998). Synergism between Bacillus thuringiensis spores and toxins against resistant and susceptible diamondback moths (Plutella xylostella). Applied and Environmental Microbiology, 64(4), 1385–1389. https://doi.org/10.1128/aem.64.4.1385-1389.1998
Lozano, E. R., Neves, P. M. O. J., Alves, L. F. A., Potrich, M., Vilas-Boas, G. F. L. T., & Monnerat, R. G. (2018). Action of natural phytosanitary products on Bacillus thuringiensis subsp. kurstaki S-1905. Bulletin of Entomological Research, 108(2), 223–231. https://doi.org/10.1017/S0007485317000670
Maagd, R. A., Bravo, A., & Crickmore, N. (2001). How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends in Genetics, 17(4), 193–199. https://doi.org/10.1016/S0168-9525(01)02237-5
Maagd, R. A., Weemen-Hendriks, M., Stiekema, W., & Bosch, D. (2000). Bacillus thuringiensis delta-endotoxin Cry1C domain III can function as a specificity determinant for Spodoptera exigua in different, but not all, Cry1-Cry1C hybrids. Applied and Environmental Microbiology, 66(4), 1559–1563. https://doi.org/10.1128/AEM.66.4.1559-1563.2000
Maghsoudi, S., & Jalali, E. (2017). Noble UV protective agent for Bacillus thuringiensis based on a combination of graphene oxide and olive oil. Scientific Reports, 7(1), 7–12. https://doi.org/10.1038/s41598-017-11080-9
Meissle, M., Romeis, J., & Bigler, F. (2011). Bt maize and integrated pest management - A European perspective. Pest Management Science, 67(9), 1049–1058. https://doi.org/10.1002/ps.2221
Ningrum, A. D., & Sumarmi, S. (2020). The extract of tea leaves (Camellia sinensis (L.) Kuntze) as protectant of Bacillus thuringiensis var. kurstaki against ultraviolet light for control of armyworm (Spodoptera litura Fab.) larvae. In AIP Conference Proceedings (Vol. 2260, No. 1, p. 030022). AIP Publishing. https://doi.org/10.1063/5.0015744
Rajathi, A., Pandiarajan, J., & Krishnan, M. (2010). Effect of RH-2485 on development, metamorphosis, and synthesis of major proteins in female silkworm Bombyx mori. Versita, 65(5), 903-913. https://doi.org/10.2478/s11756-010-0104-9
Saeed, S., Sayyed, A. H., & Ahmad, I. (2010). Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae). Journal of Pest Science, 83(2), 165–172. https://doi.org/10.1007/s10340-009-0283-8
Sansinenea, E., Salazar, F., Ramirez, M., & Ortiz, A. (2015). An ultra-violet tolerant wild-type strain of melanin-producing Bacillus thuringiensis. Jundishapur Journal of Microbiology, 8(7), e20910. https://doi.org/10.5812/jjm.20910v2
Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R., & Dean, D. H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 775–806. https://doi.org/10.1128/mmbr.62.3.775-806.1998
Setlow, B., Tautvydas, K. J., & Setlow, P. (1998). Small, acid-soluble spore proteins of the α/β type do not protect the DNA in Bacillus subtilis spores against base alkylation. Applied and Environmental Microbiology, 64(5), 1958–1962. https://doi.org/10.1128/aem.64.5.1958-1962.1998
Shorey, H. H., & Hale, R. L. (1965). Mass-Rearing of the larvae of nine noctuid species on a simple artificial medium. Journal of Economic Entomology, 58(3), 522–524. https://doi.org/10.1093/jee/58.3.522
Silva, S. M. B., Silva-Werneck, J. O., Falcao, R., Gomes, A. C., Fragoso, R. R., Quezado, M. T., Neto, O. B. O., Aguiar, J. B., De Sa, M. F. G., Bravo, A., & Monnerat, R. G. (2004). Characterization of novel Brazilian Bacillus thuringiensis strains active against Spodoptera frugiperda and other insect pests. Journal of Applied Entomology, 128(2), 102–107. https://doi.org/10.1046/j.1439-0418.2003.00812.x
Sukirno, S., Lukmawati, D., Hanum, S. S. L., Ameliya, V. F., Sumarmi, S., Purwanto, H., Suparmin, S., Sudaryadi, I., Soesilohadi, R. C. H., & Aldawood, A. S. (2022). The effectiveness of Samia ricini Drury (Lepidoptera: Saturniidae) and Attacus atlas L. (Lepidoptera: Saturniidae) cocoon extracts as ultraviolet protectants of Bacillus thuringiensis for controlling Spodoptera litura Fab. (Lepidoptera: Noctuidae). International Journal of Tropical Insect Science, 42(1), 255–260. https://doi.org/10.1007/s42690-021-00540-5
Sukirno, S., Tufail, M., Rasool, K. G., El Salamouny, S., Sutanto, K. D., & Aldawood, A. S. (2018). The efficacy and persistence of Spodoptera littoralis nucleopolyhedrovirus (SpliMNPV) applied in UV protectants against the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) under Saudi field conditions. Pakistan Journal of Zoology, 50(5), 1895–1902. https://doi.org/10.17582/JOURNAL.PJZ/2018.50.5.1895.1902
Sumarmi, S., Arlinda, M., & Sukirno, S. (2020). The effectiveness of red spinach (Amaranthus tricolor L.) and green spinach (Amaranthus hybridus L.) extracts for Bacillus thuringiensis var. kurstaki protectant against UV-B radiation for the control of armyworm (Spodoptera litura Fab.). Journal of Tropical Biodiversity and Biotechnology, 5(2), 143–148. https://doi.org/10.22146/jtbb.53004
Tao, S., & Wu, F. (2006). Sublethal effect of chlorpyrifos on dynamics of experimental Tetranychus cinnabarinus population. Journal of Applied Ecology, 17(7), 1351-1353.
Tarigan, A., Sumarmi, S., & Sukirno, S. (2020). Effectiveness of aloe (Aloe vera L.) as a protectant of Bacillus thuringiensis var kurstaki against ultraviolet light and biological control agenst of Spodoptera litura Fab. In AIP Conference Proceedings: Biological Science ICBS (Vol. 2260, No. 1, p. 030003). AIP Publishing. https://doi.org/10.1063/5.0015743
Taylor, J. E., & Riley, D. G. (2008). Artificial infestations of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), used to estimate an economic injury level in tomato. Crop Protection, 27(2), 268–274. https://doi.org/10.1016/j.cropro.2007.05.014
Zheng, S., Henken, B., Wietsma, W., Sofiari, E., Jacobsen, E., Krens, F. A., & Kik, C. (2000). Development of bio-assays and screening for resistance to beet armyworm (Spodoptera exigua Hübner) in Allium cepa L. and its wild relatives. Euphytica, 114, 77–85. https://doi.org/10.1023/A:1004089424419
Zhou, C., Liu, Y., Yu, W., Deng, Z., Gao, M., Liu, F., & Mu, W. (2011). Resistance of Spodoptera exigua to ten insecticides in Shandong, China. Phytoparasitica, 39(4), 315–324. https://doi.org/10.1007/s12600-011-0157-5
ISSN 1511-3701
e-ISSN 2231-8542