PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 47 (2) May. 2024 / JTAS-2898-2023

 

Vigna marina as a Potential Leguminous Cover Crop for High Salinity Soils

Ahmad Talha Mohamad Yunus, Sheng Bin Chiu and Amir Hamzah Ghazali

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 2, May 2024

DOI: https://doi.org/10.47836/pjtas.47.2.10

Keywords: Coastal soil, leguminous cover crop, Mucuna bracteata, Pueraria javanica, saline soils, Vigna marina

Published on: 30 May 2024

The beach bean (Vigna marina) exhibits robust growth in habitats characterised by sandy substrates, limited nutrient availability, and elevated saline levels. The utilisation of V. marina, a potentially beneficial leguminous cover crop, allows for its cultivation in regions characterised by soil salinity, hence facilitating the alleviation of environmental stress and the promotion of nitrogen fixation within the soil. A study assessed the feasibility of V. marina as a leguminous cover crop, in which this legume was cultivated in both coastal and inland soils. Pueraria javanica and Mucuna bracteate, widely recognised as established leguminous cover crops, were used as the control in this experiment. The observations involved were total plant biomass, nitrogenase activity, and leaf chlorophyll content of the host plants. The experiment consisted of five replicates arranged in a randomised complete block design, respectively. The effects of commercialised rhizobial compost on the development of the leguminous plants planted in both plots were also investigated. The results indicated that V. marina flourished in coastal and inland soils with the highest leaf chlorophyll concentration throughout the eight weeks of growth. It showed that V. marina has the potential to outperform the other two established leguminous cover crops when planted in highly salinised soils. The results also showed evidence that V. marina was an excellent potential leguminous cover crop, especially for any agricultural plots of high salinity soils, compared to the other two well-established leguminous cover crops, P. javanica and M. bracteate.

  • Abbas, A., Khan, S., Hussain, N., Hanjra, M. A., & Akbar, S. (2013). Characterizing soil salinity in irrigated agriculture using a remote sensing approach. Physics and Chemistry of the Earth, 55-57, 43-52. https://doi.org/10.1016/j.pce.2010.12.004

  • Abd-Alla, M. H., Nafady, N. A., Bashandy, S. R., & Hassan, A. A. (2019). Mitigation of effect of salt stress on the nodulation, nitrogen fixation and growth of chickpea (Cicer arietinum L.) by triple microbial inoculation. Rhizosphere, 10, 100148. https://doi.org/10.1016/j.rhisph.2019.100148

  • Abubakar, A., Ishak, M. Y., Bakar, A. A., Uddin, M. K., Ahmad, M. H., Seman, I. A., Ching, L. M., Ahmad, A., & Hashim, Z. (2023). Geospatial simulation and mapping of climate suitability for oil palm (Elaeis guineensis) production in Peninsular Malaysia using GIS/remote sensing techniques and analytic hierarchy process. Modeling Earth Systems and Environment, 9, 73-96. https://doi.org/10.1007/s40808-022-01465-9

  • Agami, R. A., Alamri, S. A. M., Abd El-Mageed, T. A., Abousekken, M. S. M., & Hashem, M. (2018). Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agricultural Water Management, 210, 261-270. https://doi.org/10.1016/j.agwat.2018.08.034

  • Ali, Y., Aslam, Z., Ashraf, M. Y., & Tahir, G. R. (2004). Effect of salinity on chlorophyll concentration, leaf area, yield and yield components of rice genotypes grown under saline environment. International Journal of Environmental Science and Technology, 1, 221-225. https://doi.org/10.1007/BF03325836

  • Aminuddin, B. Y., Ghulam, M. H., Wan Abdullah, W. Y., Zulkefli, M., & Salama, R. B. (2005). Sustainability of current agricultural practices in the Cameron Highlands, Malaysia. Water, Air, and Soil Pollution: Focus, 5, 89-101. https://doi.org/10.1007/s11267-005-7405-y

  • Amir, H. G., Shamsuddin, Z. H., Halimi, M. S., Ramlan, M. F., & Marziah, M. (2001). Effects of Azospirillum inoculation on N2 fixation and growth of oil palm plantlets at nursery stage. Journal of Oil Palm Research, 13(1), 42-49.

  • Apse, M. P., & Blumwald, E. (2002). Engineering salt tolerance in plants. Current Opinion in Biotechnology, 13(2), 146-150. https://doi.org/10.1016/S0958-1669(02)00298-7

  • Balasubramaniam, T., Shen, G., Esmaeili, N., & Zhang, H. (2023). Plants’ response mechanisms to salinity stress. Plants, 12(12), 2253. https://doi.org/10.3390/plants12122253

  • Coombs, J., Hind, G., Leegood, R. C., Tieszen, L. L., & Vonshak, A. (1985). Analytical techniques. In J. Coombs, D. O. Hall, S. P. Long, & J. M. O. Scurlock (Eds.), Techniques in bioproductivity and photosynthesis (2nd ed., pp. 219-228). Pergamon. https://doi.org/10.1016/B978-0-08-031999-5.50027-3

  • Egamberdieva, D., & Kucharova, Z. (2009). Selection for root colonising bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils, 45, 563-571. https://doi.org/10.1007/s00374-009-0366-y

  • Egamberdieva, D., Davranov, K., Wirth, S., Hashem, A., & Abd_Allah, E. F. (2017). Impact of soil salinity on the plant-growth-promoting and biological control abilities of root associated bacteria. Saudi Journal of Biological Sciences, 24(7), 1601-1608. https://doi.org/10.1016/j.sjbs.2017.07.004

  • El Sayed, H. E. S. A. (2011). Influence of salinity stress on growth parameters, photosynthetic activity, and cytological studies of Zea mays L. plant using hydrogel polymer. Agriculture and Biology Journal of North America, 2(6), 907-920. https://doi.org/10.5251/abjna.2011.2.6.907.920

  • Flowers, T. J. (2004). Improving crop salt tolerance. Journal of Experimental Botany, 55(396), 307-319. https://doi.org/10.1093/jxb/erh003

  • Gechev, T., & Petrov, V. (2020). Reactive oxygen species and abiotic stress in plants. International Journal of Molecular Sciences, 21(20), 7433. https://doi.org/10.3390/ijms21207433

  • Genc, Y., Taylor, J., Lyons, G., Li, Y., Cheong, J., Appelbee, M., Oldach, K., & Sutton, T. (2019). Bread wheat with high salinity and sodicity tolerance. Frontiers in Plant Science, 10, 1280. https://doi.org/10.3389/fpls.2019.01280

  • Hasnat, G. N. T., Kabir, M. A., & Hossain, M. A. (2018). Major environmental issues and problems of South Asia, particularly Bangladesh. In C. Hussain (Ed.), Handbook of environmental materials management (pp. 1-40). Springer. https://doi.org/10.1007/978-3-319-58538-3_7-1

  • Heidari, M. (2012). Effects of salinity stress on growth, chlorophyll content and osmotic components of two basil (Ocimum basilicum L.) genotypes. African Journal of Biotechnology, 11(2), 379-384. https://doi.org/10.5897/AJB11.2572

  • Herman, T., Murchie, E. H., & Warsi, A. A. (2015). Rice production and climate change: A case study of malaysian rice. Pertanika Journal of Tropical Agricultural Science, 38(3), 321-328.

  • Kalhoro, N. A., Rajpar, I., Kalhoro, S. A., Ali, A., Raza, S., Ahmed, M., Kalhoro, F. A., Ramzan, M., & Wahid, F. (2016). Effect of salt stress on the growth and yield of wheat (Triticum aestivum L.). American Journal of Plant Sciences, 7, 2257-2271. https://doi.org/10.4236/ajps.2016.715199

  • Kato, M., & Shimizu, S. (1985). Chlorophyll metabolism in higher plants VI. Involvement of peroxidase in chlorophyll degradation. Plant and Cell Physiology, 26(7), 1291-1301. https://doi.org/10.1093/oxfordjournals.pcp.a077029

  • Kesawat, M. S., Satheesh, N., Kherawat, B. S., Kumar, A., Kim, H.-U., Chung, S.-M., & Kumar, M. (2023). Regulation of reactive oxygen species during salt stress in plants and their crosstalk with other signaling molecules - Current perspectives and future directions. Plants, 12(4), 864. https://doi.org/10.3390/plants12040864

  • Khasanov, S., Oymatov, R., & Kulmatov, R. (2023). Canopy temperature: As an indicator of soil salinity (a case study in Syrdarya province, Uzbekistan). In IOP Conference Series: Earth and Environmental Science (Vol. 1142, No. 1, p. 012109). IOP Publishing. https://doi.org/10.1088/1755-1315/1142/1/012109

  • Krasensky, J., & Jonak, C. (2012). Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. Journal of Experimental Botany, 63(4), 1593-1608. https://doi.org/10.1093/jxb/err460

  • Li, Y.-T., Li, Y., Li, Y.-N., Liang, Y., Sun, Q., Li, G., Liu, P., Zhang, Z.-S., & Gao, H.-Y. (2020). Dynamic light caused less photosynthetic suppression, rather than more, under nitrogen deficit conditions than under sufficient nitrogen supply conditions in soybean. BMC Plant Biology, 20, 339. https://doi.org/10.1186/s12870-020-02516-y

  • López, S. M. Y., Sánchez, M. D. M., Pastorino, G. N., Franco, M. E. E., García, N. T., & Balatti, P. A. (2018). Nodulation and delayed nodule senescence: Strategies of two Bradyrhizobium japonicum isolates with high capacity to fix nitrogen. Current Microbiology, 75, 997-1005. https://doi.org/10.1007/s00284-018-1478-0

  • Masarmi, A. G., Solouki, M., Fakheri, B., Kalaji, H. M., Mahgdingad, N., Golkari, S., Telesiński, A., Lamlom, S. F., Kociel, H., & Yousef, A. F. (2023). Comparing the salinity tolerance of twenty different wheat genotypes on the basis of their physiological and biochemical parameters under NaCl stress. PLOS One, 18(3), e0282606. https://doi.org/10.1371/journal.pone.0282606

  • Mooney, H. A., Fichtner, K., & Schulze, E.-D. (1995). Growth, photosynthesis, and storage of carbohydrates and nitrogen in Phaseolus lunatus in relation to resource availability. Oecologia, 104, 17-23. https://doi.org/10.1007/BF00365557

  • Muhamad Hassan, M. H., Awang, Y., Jaafar, J. N., Sayuti, Z., Othman Ghani, M. N., Mohamad Sabdin, Z. H., & Nazli, M. H. (2022). Effects of salinity sources on growth, physiological process, yield, and fruit quality of grafted rock melon (Cucumis melo L.). Pertanika Journal of Tropical Agricultural Science, 45(4), 919-941. https://doi.org/10.47836/pjtas.45.4.05

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911

  • Naing, A. H., & Kim, C. K. (2021). Abiotic stress‐induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiologia Plantarum, 172(3), 1711-1723. https://doi.org/10.1111/ppl.13373

  • Neufeld, H. S., Chappelka, A. H., Somers, G. L., Burkey, K. O., Davison, A. W., & Finkelstein, P. L. (2006). Visible foliar injury caused by ozone alters the relationship between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower. Photosynthesis Research, 87, 281-286. https://doi.org/10.1007/s11120-005-9008-x

  • Nordin, M. N., Lah, M. K., & Jahan, M. S. (2015). Effects of different salinity levels on rice production. Australian Journal of Basic and Applied Sciences, 9, 524-530.

  • Nounjan, N., Mahakham, W., Siangliw, J. L., Toojinda, T., & Theerakulpisut, P. (2020). Chlorophyll retention and high photosynthetic performance contribute to salinity tolerance in rice carrying drought tolerance quantitative trait loci (QTLs). Agriculture, 10(12), 620. https://doi.org/10.3390/agriculture10120620

  • Ojo, O. A. (2001). Assessment of nodulation of Mucuna pruriens by promiscuous indigenous rhizobia in the moist savanna zone of Nigeria. World Journal of Microbiology and Biotechnology, 17, 429-432. https://doi.org/10.1023/A:1016769412363

  • Omoto, E., Taniguchi, M., & Miyake, H. (2012). Adaptation responses in C4 photosynthesis of maize under salinity. Journal of Plant Physiology, 169(5), 469-477. https://doi.org/10.1016/j.jplph.2011.11.009

  • Paramananthan, S. (2013). Managing marginal soils for sustainable growth of oil palms in the tropics. Journal of Oil Palm, Environment and Health, 4, 1-16. https://doi.org/10.5366/jope.2013.1

  • Piccoli, P., & Bottini, R. (2013). Abiotic stress tolerance induced by endophytic PGPR. In R. Aroca (Ed.), Symbiotic endophytes (Vol. 37, pp. 151-163). Springer. https://doi.org/10.1007/978-3-642-39317-4_8

  • Rajabi Dehnavi, A., Zahedi, M., Ludwiczak, A., Cardenas Perez, S., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(6), 859. https://doi.org/10.3390/agronomy10060859

  • Rao, D. L. N., Giller, K. E., Yeo, A. R., & Flowers, T. J. (2002). The effects of salinity and sodicity upon nodulation and nitrogen fixation in chickpea (Cicer arietinum). Annals of Botany, 89(5), 563-570. https://doi.org/10.1093/aob/mcf097

  • Reis, V. M., Baldani, V. L. D., & Baldani, J. I. (2015). Isolation, identification, and biochemical characterization of Azospirillum spp. and other nitrogen-fixing bacteria. In F. Cassán, Y. Okon, & C. Creus (Eds.), Handbook for Azospirillum (pp. 3-26). Springer. https://doi.org/10.1007/978-3-319-06542-7_1

  • Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nature and Science, 17(1), 34-40. https://doi.org/10.7537/marsnsj170119.06

  • Sahbeni, G., Ngabire, M., Musyimi, P. K., & Székely, B. (2023). Challenges and opportunities in remote sensing for soil salinization mapping and monitoring: A review. Remote Sensing, 15(10), 2540. https://doi.org/10.3390/rs15102540

  • Schwabe, K. A., Kan, I., & Knapp, K. C. (2006). Drain water management for salinity mitigation in irrigated agriculture. American Journal of Agricultural Economics, 88(1), 133-149. https://doi.org/10.1111/j.1467-8276.2006.00843.x

  • Shahid, S. A., Zaman, M., & Heng, L. (2018). Introduction to soil salinity, sodicity, and diagnostics techniques. In Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (pp. 1-42). Springer. https://doi.org/10.1007/978-3-319-96190-3_1

  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001

  • Shultana, R., Kee Zuan, A. T., Yusop, M. R., Saud, H. M., & El-Shehawi, A. M. (2021). Bacillus tequilensis strain ‘UPMRB9’improves biochemical attributes and nutrient accumulation in different rice varieties under salinity stress. PLOS One, 16(12), e0260869. https://doi.org/10.1371/journal.pone.0260869

  • Singh, A. K., Velmurugan, A., Gupta, D. S., Kumar, J., Kesari, R., Konda, A., Singh, N. P., Roy, S. D., Biswas, U., Kumar, R. R., & Singh, S. (2019). Draft genome sequence of a less-known wild Vigna: Beach pea (V. marina cv. ANBp-14-03). The Crop Journal, 7(5), 660-666. https://doi.org/10.1016/j.cj.2019.05.007

  • Squires, V. R., & Glenn, E. P. (2011). Salination, desertification, and soil erosion. In The role of food, agriculture, forestry, and fisheries in human nutrition (Vol. 3, pp. 102-123). Encyclopedia of Life Support Systems Publications.

  • Ullah, A., Bano, A., & Khan, N. (2021). Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems, 5, 618092. https://doi.org/10.3389/fsufs.2021.618092

  • Wakeel, A., Sümer, A., Hanstein, S., Yan, F., & Schubert, S. (2011). In vitro effect of different Na+/K+ ratios on plasma membrane H+-ATPase activity in maize and sugar beet shoot. Plant Physiology and Biochemistry, 49(3), 341-345. https://doi.org/10.1016/j.plaphy.2011.01.006

  • Wan, W., Liu, Q., Zhang, C., Li, K., Sun, Z., Li, Y., & Li, H. (2023). Alfalfa growth and nitrogen fixation constraints in salt-affected soils are in part offset by increased nitrogen supply. Frontiers in Plant Science, 14, 1126017. https://doi.org/10.3389/fpls.2023.1126017

  • Wang, N., Fu, F., Wang, H., Wang, P., He, S., Shao, H., Ni, Z., & Zhang, X. (2021). Effects of irrigation and nitrogen on chlorophyll content, dry matter, and nitrogen accumulation in sugar beet (Beta vulgaris L.). Scientific Reports, 11, 16651. https://doi.org/10.1038/s41598-021-95792-z

  • Witcombe, J. R., Hollington, P. A., Howarth, C. J., Reader, S., & Steele, K. A. (2008). Breeding for abiotic stresses for sustainable agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 703-716. https://doi.org/10.1098/rstb.2007.2179

  • Yadav, S., Modi, P., Dave, A., Vijapura, A., Patel, D., & Patel, M. (2020). Effect of abiotic stress on crops. In M. Hasanuzzaman, M. C. M. T. Filho, M. Fujita, & T. A. R. Nogueira (Eds.), Sustainable crop production. IntechOpen. https://doi.org/10.5772/intechopen.88434