e-ISSN 2231-8542
ISSN 1511-3701
Nur Asyiqin Ramli, Siti Salwa Abd Gani, Mohd Izuan Effendi Halmi and Uswatun Hasanah Zaidan
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024
DOI: https://doi.org/10.47836/pjtas.47.3.08
Keywords: Ajwa date fruit extract, anti-collagenase, anti-tyrosinase, sun protection factor
Published on: 27 August 2024
This research explores the potential of Ajwa date fruit extract as a bioactive component in cosmeceutical formulations, with particular emphasis on its anti-tyrosinase, anti-collagenase, and ultraviolet (UV) protection capabilities. The antioxidant activity was determined using the design of response surface methodology, considering the factor of sample-to-water-as-solvent ratio, extraction time, and size of the sample. This factor possesses the capacity to exert an influence on the production of antioxidants and enhance the efficacy of the extraction procedure. The Ajwa date fruit extract was obtained using the Soxhlet method. The extract showed notable inhibition percentages of 67.77 and 49.12 for anti-tyrosinase and anti-collagenase activities, respectively. Additionally, it revealed a sun protection factor value of 17.09. Previous research has indicated that Ajwa dates exhibit significant inhibitory properties against tyrosinase and collagenase enzymes, making them potentially valuable in cosmetic applications. Therefore, research has demonstrated this study’s promise in skin pigmentation, elasticity, and UV protection. The study places significant importance on exploring natural alternatives in cosmetics. It highlights the encouraging outcomes obtained from using Ajwa date fruit extract, emphasising its potential for future advancements in cosmeceuticals. The present study offers a valuable opportunity to produce skincare formulas that are both safer and more effective.
Alharbi, K. L., Raman, J., & Shin, H.-J. (2021). Date fruit and seed in nutricosmetics. Cosmetics, 8(3), 59. https://doi.org/10.3390/cosmetics8030059
Al-Shahib, W., & Marshall, R. J. (2003). The fruit of the date palm: Its possible use as the best food for the future? International Journal of Food Sciences and Nutrition, 54(4), 247–259. https://doi.org/10.1080/09637480120091982
Bigg, H. F., Clark, I. M., & Cawston, T. E. (1994). Fragments of human fibroblast collagenase: Interaction with metalloproteinase inhibitors and substrates. Biochim Biophys Acta - Protein Structure and Molecular Enzymology, 1208(1), 157-165. https://doi.org/10.1016/0167-4838(94)90173-2
de Oliveira, B. H., Packer, J. F., Chimelli, M., & de Jesus, D. A. (2007). Enzymatic modification of stevioside by cell-free extract of Gibberella fujikuroi. Journal of Biotechnology, 131(1), 92–96. https://doi.org/10.1016/j.jbiotec.2007.05.035
Fonseca, A. P., & Rafaela, N. (2013). Determination of sun protection factor by UV-Vis spectrophotometry. Health Care: Current Reviews, 1(1), 1000108. https://doi.org/10.4172/hccr.1000108
Haliloglu, Y., Ozek, T., Tekin, M., Goger, F., Baser, K. H. C., & Ozek, G. (2017). Phytochemicals, antioxidant, and antityrosinase activities of Achillea sivasica Çelik and Akpulat. International Journal of Food Properties, 20(sup1), S693–S706. https://doi.org/10.1080/10942912.2017.1308954
Herrling, T., Jung, K., & Fuchs, J. (2006). Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 63(4), 840–845. https://doi.org/10.1016/j.saa.2005.10.013
Hong, Y. J., Tomas-Barberan, F. A., Kader, A. A., & Mitchell, A. E. (2006). The flavonoid glycosides and procyanidin composition of Deglet Noor dates (Phoenix dactylifera). Journal of Agricultural and Food Chemistry, 54(6), 2405–2411. https://doi.org/10.1021/jf0581776
Momtaz, S., Lall, N., & Basson, A. (2008). Inhibitory activities of mushroom tyrosine and DOPA oxidation by plant extracts. South African Journal of Botany, 74(4), 577–582. https://doi.org/10.1016/j.sajb.2008.02.005
Morocho-Jácome, A. L., Freire, T. B., de Oliveira, A. C., de Almeida, T. S., Rosado, C., Velasco, M. V. R., & Baby, A. R. (2021). In vivo SPF from multifunctional sunscreen systems developed with natural compounds — A review. Journal of Cosmetic Dermatology, 20(3), 729–737. https://doi.org/10.1111/jocd.13609
Petruzzi, D. (2024). Cosmetics industry - Statistics and facts. Statista. https://www.statista.com/topics/3137/cosmetics-industry/#topicOverview
Ribeiro, A. S., Estanqueiro, M., Oliveira, M. B., & Lobo, J. M. S. (2015). Main benefits and applicability of plant extracts in skin care products. Cosmetics, 2(2), 48–65. https://doi.org/10.3390/cosmetics2020048
Shin, J.-W., Kwon, S.-H., Choi, J.-Y., Na, J.-I., Huh, C.-H., Choi, H.-R., & Park, K.-C. (2019). Molecular mechanisms of dermal aging and antiaging approaches. International Journal of Molecular Sciences, 20(9), 2126. https://doi.org/10.3390/ijms20092126
Shin, S., Cho, S. H., Park, D., & Jung, E. (2020). Anti-skin aging properties of protocatechuic acid in vitro and in vivo. Journal of Cosmetic Dermatology, 19(4), 977–984. https://doi.org/10.1111/jocd.13086
Suva, M. A. (2014). Evaluation of sun protection factor of zingiber officinale roscoe extract by ultraviolet spectroscopy method. Jornal of PharmaSciTech, 3(2), 95-97.
Utami, S., Sachrowardi, Q. R., Damayanti, N. A., Wardhana, A., Syarif, I., Nafik, S., Arrahmani, B. C., Kusuma, H. S. W., & Widowati, W. (2018). Antioxidants, anticollagenase and antielastase potentials of ethanolic extract of ripe sesoot (Garcinia picrorrhiza Miq.) fruit as antiaging. Journal of Herbmed Pharmacology, 7(2), 88–93. https://doi.org/10.15171/jhp.2018.15
Vijayakumar, R., Gani, S. S. A., & Mokhtar, N. F. (2017). Anti-elastase, anti-collagenase, and antimicrobial activities of the underutilized red pitaya peel: An in vitro study for anti-aging applications. Asian Journal of Pharmaceutical and Clinical Research, 10(8), 251-255. https://doi.org/10.22159/ajpcr.2017.v10i8.19048
Vujanović, M., Majkić, T., Zengin, G., Beara, I., Tomović, V., Šojić, B., Đurović, S., & Radojković, M. (2020). Elderberry (Sambucus nigra L.) juice as a novel functional product rich in health-promoting compounds. RSC Advances, 10(73), 44805–44814. https://doi.org/10.1039/d0ra09129d
Willcox, J. K., Ash, S. L., & Catignani, G. L. (2004). Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition, 44(4), 275–295. https://doi.org/10.1080/10408690490468489
Zduńska, K., Dana, A., Kolodziejczak, A., & Rotsztejn, H. (2018). Antioxidant properties of ferulic acid and its possible application. Skin Pharmacology and Physiology, 31(6), 332–336. https://doi.org/10.1159/000491755
Zengin, G., Uysal, S., Ceylan, R., & Aktumsek, A. (2015). Phenolic constituent, antioxidative, and tyrosinase inhibitory activity of Ornithogalum narbonense L. from Turkey: A phytochemical study. Industrial Crops and Products, 70, 1–6. https://doi.org/10.1016/j.indcrop.2015.03.012
ISSN 1511-3701
e-ISSN 2231-8542