e-ISSN 2231-8542
ISSN 1511-3701
Muhammad Zulhilmi Mohd Nasirudin, Siti Zaharah Sakimin, Liyana Yahya, Afifi Zainal, Noraziah Muda Omar, Shokri Jusoh and Uma Rani Sinniah
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024
DOI: https://doi.org/10.47836/pjtas.47.3.17
Keywords: Elevated CO2, green energy, Napier grass, productivity, ratooning, renewable sources
Published on: 27 August 2024
Napier grass is crucial in reducing greenhouse gas emissions by substituting non-renewable resources. When Napier grass is burned, the carbon dioxide (CO2) released is roughly equal to the amount absorbed during its growth, making it a potentially carbon-neutral energy source. This study investigates the impact of ratooning (repeated harvesting) on various aspects of Napier grass, including growth, physiology, biomass production, nutrient content, and chemical analysis. It also explored the interaction between elevated CO>sub>2 levels and ratooning. Two experiments were conducted over 12 months. Experiment 1 took place in an open field at the Faculty of Agriculture, Universiti Putra Malaysia (UPM), with two treatments: no ratooning and ratooning at three months after planting (MAP). Experiment 2 was conducted in an open field at UPM and a greenhouse at Tenaga National Berhad Research, Kajang, Selangor. Eight combination treatments were studied: (T1) 1-month elevated CO2 (MECO2) - no ratooned, (T2) 1 MECO2-R at 3 MAP, (T3) 2 MECO2-noR, (T4) 2 MECO2-R at 3 MAP, (T5) 5 MECO2-noR, (T6) 5 MECO2-R at 3 MAP, (T7) 12 MECO2-noR, and (T8) 12 MECO2-R at 3 MAP. The results indicated that, in Experiment 1, no ratooning was more favourable for all parameters compared to ratooning. In Experiment 2, a 1-month exposure to elevated CO2 showed better results compared to longer exposure periods. In conclusion, Napier grass performed better when not subjected to ratooning and exposed to short-term elevated CO2 levels. This research highlights the potential of Napier grass as a sustainable and carbon-neutral energy source.
Ainsworth, E. A., & Rogers, A. (2007). The response of photosynthesis and stomatal conductance to rising (CO2): Mechanisms and environmental interactions. Plant, Cell and Environment, 30(3), 258–270. https://doi.org/10.1111/j.1365-3040.2007.01641.x
Akah, N. P., & Onweluzo. J. C. (2014). Evaluation of water-soluble vitamins and optimum cooking time of fresh edible portions of elephant grass (Pennisetum purpureum L. Schumach) shoot. Nigerian Food Journal Official Journal, 32(2), 120-127. https://doi.org/10.1016/S0189-7241(15)30127-2
Ansah, T., Osafo, E. L. K., & Hansen, H. H. (2010). Herbage yield and chemical composition of four varieties of Napier (Pennisetum purpureum) grass harvested at three different days after planting. Agriculture and Biology Journal of North America, 1(5), 923–929. https://doi.org/10.5251/abjna.2010.1.5.923.929
Assuero, S. G., & Tognetti, J. A. (2010). Tillering regulation by endogenous and environmental factors and its agricultural management. The Americas Journal of Plant Science and Biotechnology, 4(Special Issue 1), 35–48.
Babbar, N., Oberoi, H. S., & Sandhu, S. K. (2015). Therapeutic and nutraceutical potential of bioactive compounds extracted from fruit residues. Critical Reviews in Food Science and Nutrition Journal, 55(3), 319-337. https://doi.org/10.1080/10408398.2011.653734
Behnke, K., Kaiser, A., Zimmer, I., Brüggemann, N., Janz, D., Polle, A., Hampp, R., Hänsch, R., Popko, J., Schmitt-Kopplin, P., Ehlting, B., Rennenberg, H., Barta, C., Loreto, F., & Schnitzler, J.-P. (2010). RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: A transcriptomic and metabolomic analysis. Plant Molecular Biology, 74, 61–75. https://doi.org/10.1007/s11103-010-9654-z
Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., & El Hady, S. (2013). Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. Annals of Agricultural Sciences Journal, 58(2), 173–181. https://doi.org/10.1016/j.aoas.2013.07.002
Boyer, J. S. (2015). Impact of cuticle on calculations of the CO2 concentration inside leaves. Planta, 242, 1405–1412. https://doi.org/10.1007/s00425-015-2378-1
Byers, T., & Guerrero, N. (1995). Epidemiologic evidence for vitamin C and vitamin E in cancer prevention. The Amrican Journal of Clinical Nutrition, 62(6), 13855-13925. https://doi.org/10.1093/ajcn/62.6.1385S
Caird, M. A., Richards, J. H., & Donovan, L. A. (2007). Nighttime stomatal conductance and transpiration in C3 and C4 plants. Journal of American Society of Plant Biologist, 143(1), 4–10. https://doi.org/10.1104/pp.106.092940
Chan, E. W. C., Lim, Y. Y., Wong, L. F., Lianto, F. S., Wong, S. K., Lim, K. K., Joe, C. E., & Lim, T. Y. (2008). Antioxidant and tyrosinase inhibition properties of leaves and rhizomes of ginger species. Journal of Agricultural and Food Chemistry, 109(3), 477-483. https://doi.org/10.1016/j.foodchem.2008.02.016
Chaparro, C. J., & Sollenberger, L. E. (1997). Nutritive value of clipped ‘Mott’ elephant grass herbage. Agronomy Journal, 89(5), 789–793. https://doi.org/10.2134/agronj1997.00021962008900050012x
Chen, G., Heilbrun, L. K., Venkatramanamoorthy, R., Maranci, V., Redd, J. N., Klurfeld, D. M., & Djuric, Z. (2004). Effects of low-fat and or high fruit-and-vegetable diets on plasma levels of 8-isoprostane-F2α in the nutrition and breast health study. Nutrition and Cancer, 50(2), 155–160. https://doi.org/10.1207/s15327914nc5002_4
Chun, O. K., Kim, D.-O., & Lee, C. Y. (2003). Superoxide radical scavenging activity of the major polyphenols in fresh plums. Journal of Agricultural and Food Chemistry, 51(27), 8067–8072. https://doi.org/10.1021/jf034740d
Collatz, G. J., Ribas-Carbo, M., & Berry, J. A. (1992). Coupled photosynthesis-stomata1 conductance model for leaves of C4 plants. Australian Journal of Plant Physiology, 19(5), 519–538. https://doi.org/10.1071/PP9920519
Côté, J., Caillet, S., Doyon, G., Sylvain, J.-F., & Lacroix, M. (2010). Bioactive compounds in cranberries and their biological properties. Critical Reviews in Food Science and Nutrition, 50(7), 666–679. https://doi.org/10.1080/10408390903044107
De Graaff, M.-A., Van Groenigen, K.-J., Six, J., Hungate, B., & Van Kessel, C. (2006). Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Global Change Biology, 12(11), 2077–2091. https://doi.org/10.1111/j.1365-2486.2006.01240.x
Durand, M., & Kawashima, R. (1980). Influence of minerals in rumen microbial digestion. In Y. Ruckebusch & P. Thivend (Eds.), Digestive physiology and metabolism in ruminants (pp. 375–408). Springer. https://doi.org/10.1007/978-94-011-8067-2_18
Elehinafe, F. B., Odunlami, O. A., Mamudu, A. O., & Akinsanya, O. O. (2021). Investigation of the potentials of southwest Nigerian Napier Grass as an energy source to replace fossils used in firing thermal power plants for air emissions control. Results in Engineering, 11, 100259. https://doi.org/10.1016/j.rineng.2021.100259
Engineer, C. B., Hashimoto-Sugimoto, M., Negi, J., Israelsson-Nordström, M., Azoulay-Shemer, T., Rappel, W.-J., Iba, K., & Schroeder, J. I. (2016). CO2 sensing and CO2 regulation of stomatal conductance: Advances and open questions. Trends in Plant Science, 21(1), 16–30. https://doi.org/10.1016/j.tplants.2015.08.014
Falster, D. S., & Westoby, M. (2003). Plant height and evolutionary games. Trends in Ecology and Evolution, 18(7), 337–343. https://doi.org/10.1016/S0169-5347(03)00061-2
Feng, Z., Kobayashi, K., & Ainsworth, E. A. (2008). Impact of elevated ozone concentration on growth, physiology, and yield of wheat (Triticum aestivum L.): A meta-analysis. Global Change Biology, 14(11), 2696–2708. https://doi.org/10.1111/j.1365-2486.2008.01673.x
Geuns, J. M. C. (2003). Stevioside. Phytochemistry, 64(5), 913–921. https://doi.org/10.1016/S0031-9422(03)00426-6
Grodzinski, B., Woodrow, L., Leonardos, E. D., Dixon, M., & Tsujita, M. J. (1996). Plant responses to short- and long-term exposures to high carbon dioxide levels in closed environments. Advances in Space Research, 18(4–5), 203–211. https://doi.org/10.1016/0273-1177(95)00879-J
Gulfam, A., Guo, G., Tajebe, S., Chen, L., Liu, Q., Yuan, X., Bai, Y., & Saho, T. (2017). Characteristics of lactic acid bacteria isolates and their effect on the fermentation quality of Napier grass silage at three high temperatures. Journal of the Science of Food and Agriculture, 97(6), 1931–1938. https://doi.org/10.1002/jsfa.7998
Gupta, E., Purwar, S., Sundaram, S., Tripathi, P., & Rai, G. (2016). Stevioside and rebaudioside A - predominant ent-kaurene diterpene glycosides of therapeutic potential: A review. Czech Journal of Food Sciences, 34(4), 281–299. https://doi.org/10.17221/335/2015-CJFS
Haegele, T., Bunnom, T., Khumhom, S., Braeuchler, C., Liplap, P., & Arjharn, W. (2017). Expanding the farming potential of Napier grass (Pennisetum purpureum cv Schumach.) under low-fertile conditions. Suranaree Journal of Science and Technology, 24(2), 137-151.
Hager, H. A., Ryan, G. D., Kovacs, H. M., & Newman, J. A. (2016). Effects of elevated CO2 on photosynthetic traits of native and invasive C3 and C4 grasses. BMC Ecology, 16, 28. https://doi.org/10.1186/s12898-016-0082-z
Halim, R. A., Shampa, S., & Idris, A. B. (2013). Yield and nutritive quality of nine Napier grass varieties in Malaysia. Malaysian Society Animal Production, 16(2), 37–44.
Hampton, J. G., Boelt, B., Rolston, M. P., & Chastain, T. G. (2013). Effects of elevated CO2 and temperature on seed quality. Journal of Agricultural Science, 151(2), 154–162. https://doi.org/10.1017/S0021859612000263
Hanna, W. W., & Monson, W. G. (1988). Registration of dwarf tift N75 Napier grass germplasm. Crop Science, 28(5), 870–871. https://doi.org/10.2135/cropsci1988.0011183x002800050040x
Harris, R. W. (1992). Root-shoot ratios. Journal of Arboriculture, 18(1), 39–42.
Heijnen, C. G. M., Haenen, G. R. M. M., van Acker, F. A. A., van der Vijgh, W. J. F., & Bast, A. (2001). Flavonoids as peroxynitrite scavengers: The role of the hydroxyl groups. Toxicology in Vitro, 15(1), 3-6. https://doi.org/10.1016/S0887-2333(00)00053-9
Ibrahim, M. H., Jaafar, H. Z. E., Rahmat, A., & Rahman, Z. A. (2011). The relationship between phenolics and flavonoids production with total non-structural carbohydrate and photosynthetic rate in Labisia pumila cv. Benth. under high CO2 and nitrogen fertilization. Molecules, 16(1), 162–174. https://doi.org/10.3390/molecules16010162
Imran, M., Khan, S., Khalid, R., Ali, G. Z., Bakhsh, A., Masood, M., & Sultani, M. I. (2007). Performance of different millet cultivars for fodder production under rainfed conditions of Islamabad. Sarhad Journal Agriculture, 23(2), 281-284.
Ishii, Y., Hamano, K., Kang, D.-J., Idota, S., & Nishiwaki, A. (2015). Cadmium phytoremediation potential of Napier grass cultivated in Kyushu, Japan. Applied and Environmental Soil Science, 2015, 756270. https://doi.org/10.1155/2015/756270
Jaafar, H. Z. E., Haris, N. B. M., & Rahmat, A. (2008). Accumulation and partitioning of total phenols in two varieties of Labisia pumila cv. Benth. under manipulation of greenhouse irradiance. Acta Horticulturae, 797, 387–392. https://doi.org/10.17660/ActaHortic.2008.797.55
Jampeetong, A., Brix, H., & Kantawanichkul, S. (2014). Effects of inorganic nitrogen form on growth, morphology, nitrogen uptake, and nutrient allocation in hybrid Napier grass (Pennisetum purpureum × Pennisetum americanum cv. Pakchong1). Ecological Engineering, 73, 653–658. https://doi.org/10.1016/j.ecoleng.2014.09.078
Jørgensen, S. T., Pookpakdi, A., Tudsri, S., Stölen, O., Ortiz, R., & Christiansen, J. L. (2010). Cultivar-by-cutting height interactions in Napier grass (Pennisetum purpureum Schumach) grown in a tropical rain-fed environment. Acta Agriculturae Scandinavica, Section B - Soil and Plant Science, 60(3), 199–210. https://doi.org/10.1080/09064710902817954
Kimball, B. A. (2016). Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Plant Biology, 31, 36–43. https://doi.org/10.1016/j.pbi.2016.03.006
Leakey, A. D. B., Ainsworth, E. A., Bernacchi, C. J., Rogers, A., Long, S. P., & Ort, D. R. (2009). Elevated CO2 effects on plant carbon, nitrogen, and water relations: Six important lessons from FACE. Journal of Experimental Botany, 60(10), 2859–2876. https://doi.org/10.1093/jxb/erp096
Long, S. P., Ainsworth, E. A., Rogers, A., & Ort, D. R. (2004). Rising atmospheric carbon dioxide: Plants FACE the future. Plant Biology, 55, 591–628. https://doi.org/10.1146/annurev.arplant.55.031903.141610
Long, S. P., Zhu, X.-G., Naidu, S. L., & Ort, D. R. (2006). Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment, 29(3), 315–330. https://doi.org/10.1111/j.1365-3040.2005.01493.x
Lounglawan, P., Lounglawan, W., & Suksombat, W. (2014). Effect of cutting interval and cutting height on yield and chemical composition of king Napier grass (Pennisetum purpureum x Pennisetum americanum). APCBEE Procedia, 8, 27–31. https://doi.org/10.1016/j.apcbee.2014.01.075
Manyawu, G. J., Chakoma, C., Sibanda, S., Mutisi, C., & Chakoma, I. C. (2003). The effect of harvesting interval on herbage yield and nutritive value of Napier grass and hybrid Pennisetums. Asian-Australasian Journal of Animal Sciences, 16(7), 996–1002. https://doi.org/10.5713/ajas.2003.996
Marafon, A. C., Amaral, A. F. C., Machado, J. C., da Costa Carneiro, J., Bierhals, A. N., & dos Santos Guimarães, V. (2021). Chemical composition and calorific value of elephant grass varieties and other feedstocks intended for direct combustion. Japanese Society of Grassland Science, 67(3), 241–249. https://doi.org/10.1111/grs.12311
Mason, R. A. B., Cooke, J., Moles, A. T., & Leishman, M. R. (2008). Reproductive output of invasive versus native plants. Global Ecology and Biogeography, 17(5), 633–640. https://doi.org/10.1111/j.1466-8238.2008.00402.x
McDonald, R. P., & Ho, M. H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64–82. https://doi.org/10.1037/1082-989X.7.1.64
Mukhtar, M. (2006). Dry matter productivity of the dwarf and normal elephant grasses as affected by the planting density and cutting frequency. Jurnal Ilmu Ternak dan Veteriner, 11(3), 198–205. https://doi.org/10.14334/JITV.V11I3.526
Mwendia, S. W., Yunusa, I. A. M., Sindel, B. M., Whalley, R. D. B., & Bruhl, J. J. (2019). Osmotic adjustment, stomata morphology and function show contrasting responses to water stress in mesic and hydric grasses under elevated CO2 concentration. Journal of Environmental and Rural Science, 57(1), 121–131. https://doi.org/10.32615/ps.2019.016
Namiki, M. (1990). Antioxidants or antimutagens in food. Journal of Food Science and Nutrition, 29(4), 273–300. https://doi.org/10.1080/10408399009527528
Negawo, A. T., Teshome, A., Kumar, A., Hanson, J., & Jones, C. S. (2017). Opportunities for Napier grass (Pennisetum purpureum) improvement using molecular genetics. Agronomy, 7(2), 28. https://doi.org/10.3390/agronomy7020028
Niinemets, Ü., & Valladares, F. (2006). Tolerance to shade, drought, and waterlogging of temperate northern hemisphere trees and shrubs. Ecological Monographs, 76(4), 521–547. https://doi.org/10.1890/0012-9615(2006)076[0521:TTSDAW]2.0.CO;2
Norhaiza, M., Maziah, M., & Hakiman, M. (2009). Antioxidative properties of leaf extracts of a popular Malaysian herbs, Labisia pumila. Journal of Medicinal Plants Research, 3(4), 217–223.
Orodho, A. B. (2012). The role and importance of Napier grass in the smallholder dairy industry in Kenya. Agricultural and Food Sciences, 8(24), 1–36.
Osborne, C. P., Wythe, E. J., Ibrahim, D. G., Gilbert, M. E., & Ripley, B. S. (2008). Low temperature effects on leaf physiology and survivorship in the C3 and C4 subspecies of Alloteropsis semialata. Journal of Experimental Botany, 59(7), 1743–1754. https://doi.org/10.1093/jxb/ern062
Pérez-López, U., Robredo, A., Lacuesta, M., Sgherri, C., Mena-Petite, A., Navari-Izzo, F., & Muñoz-Rueda, A. (2010). Lipoic acid and redox status in barley plants subjected to salinity and elevated CO2. International Journal of Plant Biology, 139(3), 256–268. https://doi.org/10.1111/j.1399-3054.2010.01361.x
Polle, A., Eiblmeier, M., Sheppard, L., & Murray, M. (1997). Responses of antioxidative enzymes to elevated CO2 in leaves of beech (Fagus sylvatica L.) seedlings grown under a range of nutrient regimes. Plant, Cell and Environment, 20(10), 1317–1321. https://doi.org/10.1046/j.1365-3040.1997.d01-23.x
Poudel, M., & Dunn, B. (2017). Greenhouse carbon dioxide supplementation. https://extension.okstate.edu/fact-sheets/print-publications/hla/greenhouse-carbon-dioxide-supplementation-hla-6723-a.pdf
Pritchard, S. G., Rogers, H. H., Prior, S. A., & Peterson, C. M. (1999). Elevated CO2 and plant structure: A review. Journal of Global Change Biology and Science, 5(7), 807–837. https://doi.org/10.1046/j.1365-2486.1999.00268.x
Rahman, M. M., Syafieqa, N. E., Diah, N. A. M., Gondo, T., Khalif, R. I. A. R., & Akashi, R. (2019). Growth characteristics, biomass yield and mineral concentrations in seven varieties of Napier grass (Cenchrus purpureus) at establishment in Kelantan, Malaysia. Tropical Grasslands-Forrajes Tropicales, 7(5), 538–543. https://doi.org/10.17138/tgft(7)538-543
Rambau, M. D., Fushai, F., & Baloyi, J. J. (2016). Productivity, chemical composition, and ruminal degradability of irrigated Napier grass leaves harvested at three stages of maturity. South African Journal of Animal Science, 46(4), 398–408. https://doi.org/10.4314/sajas.v46i4.8
Rangnekar, D., & Thorpe, W. (Eds.) (2001). Smallholder dairy production and marketing - Opportunities and constraints. https://cgspace.cgiar.org/server/api/core/bitstreams/8863755a-31f7-4413-9f1f-0ec509890e71/content
Rengsirikul, K., Ishii, Y., Kangvansaichol, K., Sripichitt, P., Punsuvon, V., Vaithanomsat, P., Nakamanee, G., & Tudsri, S. (2013). Biomass yield, chemical composition and potential ethanol yields of 8 cultivars of Napier grass (Pennisetum purpureum cv. Schumach.) harvested 3-monthly in Central Thailand. Journal of Sustainable Bioenergy Systems, 3(2), 107–112. https://doi.org/10.4236/jsbs.2013.32015
Said, M. S. M., Ghani, W. A. W. A. K., Boon, T. H., Hussain, S. A., & Ng, D. K. S. (2019). Thermochemical conversion of Napier grass for production of renewable syngas. Processes, 7(10), 705. https://doi.org/10.3390/pr7100705
Sawasdee, V., & Pisutpaisal, N. (2014). Feasibility of biogas production from Napier grass. Energy Procedia, 61, 1229–1233. https://doi.org/10.1016/j.egypro.2014.11.1064
Thompson, M., Gamage, D., Hirotsu, N., Martin, A., & Seneweera, S. (2017). Effects of elevated carbon dioxide on photosynthesis and carbon partitioning: A perspective on root sugar sensing and hormonal crosstalk. In Journal of Plant Physiology, 8, 578. https://doi.org/10.3389/fphys.2017.00578
Wangchuk, K., Rai, K., Nirola, H., Thukten., Dendup, C., & Mongar, D. (2015). Forage growth, yield and quality responses of Napier hybrid grass cultivars to three cutting intervals in the Himalayan foothills. Tropical Grasslands-Forrajes Tropicales, 3(3), 142–150. https://doi.org/10.17138/TGFT(3)142-150
Xu, F., Wang, Z., Lu, G., Zeng, R., & Que, Y. (2021). Sugarcane ratooning ability: Research status, shortcomings, and prospects. Biology, 10(10), 1052. https://doi.org/10.3390/biology10101052
Zailan, M. Z., Yaakub, H., & Jusoh, S. (2016). Yield and nutritive value of four Napier (Pennisetum purpureum) cultivars at different harvesting ages. Agriculture and Biology Journal of North America, 7(5), 213-219. https://doi.org/10.5251/abjna.2016.7.5.213.219
Zakaria, M. A. T., Sakimin, S. Z., Ramlan, M. F., Jaafar, H. Z., Baghdadi, A., & Din, S. N. M. (2019). Influence of water stress in association with application of brassinolide and minerals on growth, physiological, and biochemical changes of banana (Musa acuminata cv. Berangan). Journal of Agrobiotechnology, 10(2), 73-85.
Zhou, Y., Zheng, C., Chen, G., Hu, R., Ji, Y., Xu, Y., & Wu, W. (2022). Border effect on ratoon crop yield in a mechanized rice ratooning system. Agronomy, 12(2), 262. https://doi.org/10.3390/agronomy12020262
ISSN 1511-3701
e-ISSN 2231-8542