e-ISSN 2231-8542
ISSN 1511-3701
Mingzhao Han, Susilawati Kasim, Zhongming Yang, Xi Deng, Halimatul Sa’adiah Abdullah, Effyanti Mohd Shuib and Md Kamal Uddin
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024
DOI: https://doi.org/10.47836/pjtas.47.3.09
Keywords: Biostimulant, drought tolerance, maize, plant physiology, weed extract
Published on: 27 August 2024
To investigate the effects of foliar application of different concentrations of Elusine indica extract (EIE) on growth, photosynthesis, and osmoprotectant contents in maize under drought stress. The weed powder was extracted using methanol, followed by a solid-liquid extraction procedure. Plants were sprayed with three different concentrations of EIE at 1, 3, and 5 g/L and morphological parameters, chlorophyll, relative water content (RWC), soluble sugar, proline, protein, glutathione (GSH), and malondialdehyde (MDA) contents were determined. The results showed that drought stress led to a decline in morphological characteristics, RWC and soluble sugar and increased proline, protein, GSH, and MDA contents. However, foliar application of EIE significantly improved plant height, fresh and dry weight, chlorophyll content, RWC, soluble sugar, and GSH, while the proline level was diminished compared to drought treatment. Soluble sugar showed a significant positive correlation with fresh and dry weight (r = 0.742 and 0.783, p < 0.01) and a strong negative correlation with MDA (r = -0.459, p < 0.05). Therefore, this result indicated that EIE can be used as an inexpensive and environmentally friendly biostimulant to help plants enhance tolerance to drought.
Adoho, A. C. C., Zinsou, F. T., Olounlade, P. A., Azando, E. V. B., Hounzangbe-Adote, M. S., & Gbangboche, A. B. (2021). Review of the literature of Eleusine indica: Phytochemical, toxicity, pharmacological, and zootechnical studies. Journal of Pharmacognosy and Phytochemistry, 10(3), 29-33. https://doi.org/10.22271/phyto.2021.v10.i3a.14060
Anjum, S. A., Wang, L., Farooq, M., Xue, L., & Ali, S. (2011). Fulvic acid application improves the maize performance under well‐watered and drought conditions. Journal of Agronomy and Crop Science, 197(6), 409-417. https://doi.org/10.1111/j.1439-037X.2011.00483.x
Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060
Batra, N. G., Sharma, V., & Kumari, N. (2014). Drought-induced changes in chlorophyll fluorescence, photosynthetic pigments, and thylakoid membrane proteins of Vigna radiata. Journal of Plant Interactions, 9(1), 712-721. https://doi.org/10.1080/17429145.2014.905801
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of. protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
Chen, C.-H., Lin, K.-H., Chang, Y.-S., & Chang, Y.-J. (2023). Application of water-saving irrigation. and biostimulants on the agronomic performance of maize (Zea mays). Process Safety and Environmental Protection, 177, 1377-1386. https://doi.org/10.1016/j.psep.2023.08.008
De Vos, C. H. R., Schat, H., De Waal, M. A. M, Vooijs, R., & Ernst, W. H. O. (1991). Increased resistance to copper‐induced damage of the root cell plasmalemma in copper tolerant Silene cucubalus. Physiologia Plantarum, 82(4), 523-528. https://doi.org/10.1111/j.1399-3054.1991.tb02942.x
Dubois, M., Gilles, K., Hamilton, J. K., Rebers, P. A., & Smith, F. (1951). A colorimetric method for the determination of sugars. Nature, 168, 167. https://doi.org/10.1038/168167a0
ElSayed, A. I., Rafudeen, M. S., Ganie, S. A., Hossain, M. S., & Gomaa, A. M. (2022). Seed priming with cypress leaf extract enhances photosynthesis and antioxidative defense in zucchini seedlings under salt stress. Scientia Horticulturae, 293, 110707. https://doi.org/10.1016/j.scienta.2021.110707
European Biostimulants Industry Council. (n.d.). EBIC is shaping the biostimulant industry. EBIC. https://biostimulants.eu/wp-content/uploads/2019/10/EBIC-Brochure-English.pdf
Galant, A., Preuss, M. L., Cameron, J. C., & Jez, J. M. (2011). Plant glutathione biosynthesis: Diversity in biochemical regulation and reaction products. Frontiers in Plant Science, 2, 45. https://doi.org/10.3389/fpls.2011.00045
Gill, S. S, & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12), 909-930. https://doi.org/10.1016/j.plaphy.2010.08.016
Goñi, O., Quille, P., & O’Connell, S. (2018). Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiology and Biochemistry, 126, 63-73. https://doi.org/10.1016/j.plaphy.2018.02.024
Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 106(1), 207-212. https://doi.org/10.1016/0003-2697(80)90139-6
Gupta, A., Rico-Medina, A., & Caño-Delgado, A. I. (2020). The physiology of plant responses to drought. Science, 368(6488), 266-269. https://doi.org/10.1126/science.aaz7614
Hossain, M. S., ElSayed, A. I., Moore, M., & Dietz, K. J. (2017). Redox and reactive oxygen species. network in acclimation for salinity tolerance in sugar beet. Journal of Experimental Botany, 68(5), 1283-1298. https://doi.org/10.1093/jxb/erx019
Iqbal, M., & Gnanaraj, C. (2012). Eleusine indica L. possesses antioxidant activity and precludes carbon tetrachloride (CCl4)-mediated oxidative hepatic damage in rats. Environmental Health and Preventive Medicine, 17, 307-315. https://doi.org/10.1007/s12199-011-0255-5
Mohammadi Alagoz, S., Hadi, H., Toorchi, M., Pawłowski, T. A., Lajayer, B. A., Price, G. W., Farooq, M., & Astatkie, T. (2023). Morpho-physiological responses and growth indices of triticale to drought and salt stresses. Scientific Reports, 13, 8896. https://doi.org/10.1038/s41598-023-36119-y
Mohammadi Alagoz, S., Zahra, N., Hajiaghaei Kamrani, M., Lajayer, B. A., Nobaharan, K., Astatkie, T., Siddique, K. H. M., & Farooq, M. (2023). Role of root hydraulics in plant drought tolerance. Journal of Plant Growth Regulation, 42, 6228-6243. https://doi.org/10.1007/s00344-022-10807-x
Okokon, J. E., Odomena, C. S., Effiong, I., Obot, J., & Udobang, J. A. (2010). Antiplasmodial and antidiabetic activities of Eleusine indica. International Journal of Drug Development and Research, 2(3), 493-500.
Pourghasemian, N., Moradi, R., Naghizadeh, M., & Landberg, T. (2020). Mitigating drought stress in sesame by foliar application of salicylic acid, beeswax waste, and licorice extract. Agricultural Water Management, 231, 105997. https://doi.org/10.1016/j.agwat.2019.105997
Rai, A. C., Singh, M., & Shah, K. (2012). Effect of water withdrawal on formation of free radical, proline accumulation and activities of antioxidant enzymes in ZAT12-transformed transgenic tomato plants. Plant Physiology and Biochemistry, 61, 108-114. https://doi.org/10.1016/j.plaphy.2012.09.010
Shemi, R., Wang, R., Gheith, E. S. M. S., Hussain, H. A., Hussain, S., Irfan, M., Cholidah, L., Zhang, S., & Wang, L. (2021). Effects of salicylic acid, zinc, and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Scientific Reports, 11, 3195. https://doi.org/10.1038/s41598-021-82264-7
Sitohy, M. Z., Desoky, E. S. M., Osman, A., & Rady, M. M. (2020). Pumpkin seed protein hydrolysate treatment alleviates salt stress effects on Phaseolus vulgaris by elevating antioxidant capacity and recovering ion homeostasis. Scientia Horticulturae, 271, 109495. https://doi.org/10.1016/j.scienta.2020.109495
Song, L., & Jin, J. (2020). Improving CERES-Maize for simulating maize growth and yield under water stress conditions. European Journal of Agronomy, 117, 126072. https://doi.org/10.1016/j.eja.2020.126072
Tadros, M. J., Omari, H. J., & Turk, M. A. (2019). The morphological, physiological and biochemical. responses of sweet corn to foliar application of amino acids biostimulants sprayed at three growth stages. Australian Journal of Crop Science, 13(3), 412-417. https://doi.org/10.21475/ajcs.19.13.03.p1335
Taha, R. S., Alharby, H. F., Bamagoos, A. A., Medani, R. A., & Rady, M. M. (2020). Elevating tolerance of drought stress in Ocimum basilicum using pollen grains extract; A natural biostimulant by regulation of plant performance and antioxidant defense system. South African Journal of Botany, 128, 42-53. https://doi.org/10.1016/j.sajb.2019.09.014
Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., & Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17-22. https://doi.org/10.1038/nclimate2067
Wang, W., Zheng, W., Lv, H., Liang, B., Jin, S., Li, J., & Zhou, W. (2022). Animal-derived plant biostimulant alleviates drought stress by regulating photosynthesis, osmotic adjustment, and antioxidant systems in tomato plants. Scientia Horticulturae, 305, 111365. https://doi.org/10.1016/j.scienta.2022.111365
ISSN 1511-3701
e-ISSN 2231-8542