e-ISSN 2231-8542
ISSN 1511-3701
Betha Silmia, Budiastuti Kurniasih, Priyono Suryanto and Eka Tarwaca Susila Putra
Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024
DOI: https://doi.org/10.47836/pjtas.47.3.10
Keywords: Abaca, agroforestry, oxidative stress, shading stress
Published on: 27 August 2024
Abaca, one of the potential fiber crops with high-quality fiber and promising economic value, is mainly established under the agroforestry system, for it is considered a non-primary crop. The study aims to observe the metabolic and biochemical performance as well as the fiber quality of abaca under the agroforestry system. The experimental design used in this study was nested with two types of agroforestry systems, i.e., intermediate phase (Fase Tengah, FT) and advanced phase (Fase Lanjutan, FL) and was conducted during the rainy season. Parameters observed in this study were divided into edaphic and climatic parameters, oxidative response parameters, foliage macro- and micronutrient, and fiber quality. Despite poor soil quality compared to FL, higher relative humidity (4.35%), lower temperature (2.73%), and lower shading intensity were observed in FT. Improved soil characteristics in FL, viz. soil water content (19.64%), organic carbon (72.89%), porosity (4.29%), cation exchange capacity (13.77%), and pH (35.13%), were unable to compensate plant stress induced by the high shading intensity at 83.99%. Consequently, it contributed to higher levels of malondialdehyde, superoxide anion, hydrogen peroxide, superoxide dismutase, peroxidase, and phenol by 0.07%, 1.86%, 32.66%, 0.08%, 14.63%, and 35.08%, respectively, due to shading stress. Nevertheless, ascorbic acid content in FL was lower (18.90%) compared to FT. Higher fiber diameter (23.53%) and tensile strength (18.77%) of abaca in FT were observed compared to FL. The improved microclimatic conditions under FT promoted the high adaptability of abaca to poor soil quality. Therefore, it contributed to enhanced growth and fiber quality compared to FL. Pruning is pivotal to managing shading intensity.
Abera, H., Abdisa, M., & Washe, A. P. (2020). Spectrophotometric method to the determination of ascorbic acid in M. stenopetala leaves through catalytic titration with hexavalent chromium and its validation. International Journal of Food Properties, 23(1), 999–1015. https://doi.org/10.1080/10942912.2020.1775249
Ahmed, N., Ali, M. A., Danish, S., Chaudhry, U. K., Hussain, S., Hassan, W., Ahmad, F., & Ali, N. (2020). Role of macronutrients in cotton production. In S. Ahmad & M. Hasanuzzaman (Eds.), Cotton production and uses: Agronomy, crop protection, and postharvest technologies (pp. 81–104). Springer. https://doi.org/10.1007/978-981-15-1472-2_6
Al-Saeedi, A. H., & Hossain, M. A. (2015). Total phenols, total flavonoids contents and free radical scavenging activity of seeds crude extracts of pigeon pea traditionally used in Oman for the treatment of several chronic diseases. Asian Pacific Journal of Tropical Disease, 5(4), 316–321. https://doi.org/10.1016/S2222-1808(14)60790-8
Alexander, A. G. (1966). Oxidizing enzymes of sugarcane: Peroxidase. The Journal of Agriculture of the University of Puerto Rico, 50(1), 36–52. https://doi.org/10.46429/jaupr.v50i1.3440
Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372), 1331–1341. https://doi.org/10.1093/jexbot/53.372.1331
American Society for Testing and Materials. (2003). Annual book of ASTM standards. ASTM International.
Armecin, R. B. (2008). Nutrient composition of abaca (Musa textilis Nee) at seedling, vegetative, and flagleaf stages of growth. Journal of Natural Fibers, 5(4), 331–346. https://doi.org/10.1080/15440470802457136
Armecin, R. B., & Coseco, W. C. (2012). Abaca (Musa textilis Nee) allometry for above-ground biomass and fiber production. Biomass and Bioenergy, 46, 181–189. https://doi.org/10.1016/j.biombioe.2012.09.004
Armecin, R. B., Cosico, W. C., & Badayos, R. B. (2011). Characterization of the different abaca-based agro-ecosystems in Leyte, Philippines. Journal of Natural Fibers, 8(2), 111–125. https://doi.org/10.1080/15440478.2011.576114
Asigbaase, M., Lomax, B. H., Dawoe, E., & Sjogersten, S. (2020). Influence of organic cocoa agroforestry on soil physico-chemical properties and crop yields of smallholders’ cocoa farms, Ghana. Renewable Agriculture and Food Systems, 36(3), 255–264. https://doi.org/10.1017/S1742170520000290
Bande, M. M., Asio, V. B., Sauerborn, J., & Römheld, V. (2016). Growth performance of abaca (Musa textilis Née) integrated in multi-strata agroecosystems. Annals of Tropical Research, 38(1), 19–35. https://doi.org/10.32945/atr3813.2016
Bande, M. M., Grenz, J., Asio, V. B., & Sauerborn, J. (2013). Fiber yield and quality of abaca (Musa textilis var. Laylay) grown under different shade conditions, water, and nutrient management. Industrial Crops and Products, 42, 70–77. https://doi.org/10.1016/j.indcrop.2012.05.009
Bande, M. M., Grenz, J., Asio, V. B., & Sauerborn, J. (2012). Nutrient uptake and fiber yield of abaca (Musa textilis var. Laylay) as affected by shade, irrigation and fertilizer application. Annals of Tropical Research, 34(1), 1–28. https://doi.org/10.32945/atr3411.2012
Barben, S. A., Hopkins, B. G., Jolley, V. D., Webb, B. L., Nichols, B. A., & Buxton, E. A. (2011). Zinc, manganese and phosphorus interrelationships and their effects on iron and copper in chelator-buffered solution grown russet burbank potato. Journal of Plant Nutrition, 34(8), 1144–1163. https://doi.org/10.1080/01904167.2011.558158
Barrow, N. J., & Hartemink, A. E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487, 21–37. https://doi.org/10.1007/s11104-023-05960-5
Bartoli, C. G., Tambussi, E. A., Diego, F., & Foyer, C. H. (2009). Control of ascorbic acid synthesis and accumulation and glutathione by the incident light red/far red ratio in Phaseolus vulgaris leaves. Federation of European Biochemical Societies Letters, 583(1), 118–122. https://doi.org/10.1016/j.febslet.2008.11.034
Berríos, G. A., Escobar, A. L., Alberdi, M. R., Nunes-Nesi, A., & Reyes-Díaz, M. M. (2019). Manganese toxicity amelioration by phosphorus supply in contrasting Mn resistant genotypes of ryegrass. Plant Physiology and Biochemistry, 144, 144–156. https://doi.org/10.1016/j.plaphy.2019.09.034
Brady, N. C. (1984). The nature and properties of soils (9th ed.). Macmillan Publishing Company.
Campa, A. (1990). Biological roles of plant peroxidases: Known and potential function. In J. Everse, M. B. Grisham, & K. E. Everse (Eds.), Peroxidases in chemistry and biology (Vol. 2, pp. 25–50). CRC Press.
Chanan, M. (2019). Karakterisasi tapak, keseimbangan hara, dan pengelolaan bahan organik untuk peningkatan pertumbuhan jati unggul (Tectona grandis L.f.) (Studi kasus di petak 64f RPH Sidowayah BKPH Kedunggalar KPH Ngawi) [Site characterization, nutrient balance, and organic matter management for increased growth of superior teak (Tectona grandis L.f.) (Case study in plot 64f RPH Sidowayah BKPH Kedunggalar KPH Ngawi)] [Doctoral dissertation, Universitas Gadjah Mada]. Electronic Theses and Dissertation UGM. https://etd.repository.ugm.ac.id/penelitian/detail/179806
Chaturvedi, S., Khan, S., Bhunia, R. K., Kaur, K., & Tiwari, S. (2022). Metabolic engineering in food crops to enhance ascorbic acid production: Crop biofortification perspectives for human health. Physiology and Molecular Biology of Plants, 28, 871–884. https://doi.org/10.1007/s12298-022-01172-w
Chaves, A. R. M., Ten-Caten, A., Pinheiro, H. A., Ribeiro, A., & DaMatta, F. M. (2008). Seasonal changes in photoprotective mechanisms of leaves from shaded and unshaded field-grown coffee (Coffea arabica L.) trees. Trees, 22, 351–361. https://doi.org/10.1007/s00468-007-0190-7
Cherubin, M. R., Chavarro-Bermeo, J. P., & Silva-Olaya, A. M. (2019). Agroforestry systems improve soil physical quality in northwestern Colombian Amazon. Agroforestry Systems, 93, 1741–1753. https://doi.org/10.1007/s10457-018-0282-y
de Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P., & Schjoerring, J. K. (2021). The molecular–physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 229(5), 2446–2469. https://doi.org/10.1111/nph.17074
de Souza Júnior, J. P., de Mello Prado, R., Campos, C. N. S., Oliveira, D. F., Cazetta, J. O., & Detoni, J. A. (2022). Silicon foliar spraying in the reproductive stage of cotton plays an equivalent role to boron in increasing yield, and combined boron-silicon application, without polymerization, increases fiber quality. Industrial Crops and Products, 182, 114888. https://doi.org/10.1016/j.indcrop.2022.114888
Delagrange, S., Montpied, P., Dreyer, E., Messier, C., & Sinoquet, H. (2006). Does shade improve light interception efficiency? A comparison among seedlings from shade-tolerant and -intolerant temperate deciduous tree species. New Phytologist, 172(2), 293–304. https://doi.org/10.1111/j.1469-8137.2006.01814.x
Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset selection algorithms: Frequency of obtaining authentic and noise variables. British Journal of Mathematical and Statistical Psychology, 45(2), 265–282. https://doi.org/10.1111/j.2044-8317.1992.tb00992.x
Dessie, E., Tesfaye, T., Fanxizi, L., Gideon, R. K., & Qiu, Y. (2023). The Effect of fibre position and gauge lengths along the length of enset bundle fibres on physical and mechanical properties: Application of statistics analysis. Journal of Natural Fibers, 20(1), 2150742. https://doi.org/10.1080/15440478.2022.2150742
Dumanović, J., Nepovimova, E., Natić, M., Kuča, K., & Jaćević, V. (2021). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in Plant Science, 11, 552969. https://doi.org/10.3389/fpls.2020.552969
Dupont, S., & Brunet, Y. (2008). Influence of foliar density profile on canopy flow: A large-eddy simulation study. Agricultural and Forest Meteorology, 148(6–7), 976–990. https://doi.org/10.1016/j.agrformet.2008.01.014
Ekanayake, I. J., Ortiz, R., & Vuylsteke, D. R. (1994). Influence of leaf age, soil moisture, VPD, and time of day on leaf conductance of various Musa genotypes in a humid forest-moist savanna transition site. Annals of Botany, 74(2), 173–178. https://doi.org/10.1006/anbo.1994.1106
Emma. (2017). Potensi dan pola pemanfaatan Hutan Pangkuan Desa (HPD) Pitu dan Megeri [Potency and utilization pattern of Hutan Pangkuan Desa (HPD) Pitu and Megeri]. Fakultas Kehutanan Universitas Gadjah Mada. https://bentangalam-hutantropis.fkt.ugm.ac.id/2017/12/08/potensihpd-pitu-dan-megeri/
Food and Agriculture Organization of the United Nations. (2013). Commodity balances (non-food) (2010-). FAO. https://www.fao.org/faostat/en/#data/CB
Food and Agriculture Organization of the United Nations. (2022). Land use statistics and indicators: Global, regional, and country trends 2000-2020. FAO. https://doi.org/10.4060/cc0963en
Fortier, C. A., Zumba, J., Rodgers, J., Peralta, D., French, A., & Hunsaker, D. (2021). The effects of two field conditions on metal ion concentrations in cotton fibers. American Association of Textile Chemists and Colorists Journal of Research, 8(1), 8–13. https://doi.org/10.14504/ajr.8.1.2
Franck, R. R. (2005). Abaca. In R. E. Franck (Ed.), Bast and other plant fibres (pp. 315–321). Woodhead Publishing. https://doi.org/10.1533/9781845690618.315
Graham, B. P., & Haigler, C. H. (2021). Microtubules exert early, partial, and variable control of cotton fiber diameter. Planta, 253, 47. https://doi.org/10.1007/s00425-020-03557-1
Hassanzadehdelouei, M., Ul-Allah, S., & Madani, A. (2022). Cotton fiber quality response to nitrogen depends on source-sink process, boll growth habit, and weather condition. Industrial Crops and Products, 186, 115279. https://doi.org/10.1016/j.indcrop.2022.115279
Heming, N. M., Schroth, G., Talora, D. C., & Faria, D. (2022). Cabruca agroforestry systems reduce vulnerability of cacao plantations to climate change in southern Bahia. Agronomy for Sustainable Development, 42, 48. https://doi.org/10.1007/s13593-022-00780-w
Heyneke, E., Luschin-Ebengreuth, N., Krajcer, I., Wolkinger, V., Müller, M., & Zechmann, B. (2013). Dynamic compartment specific changes in glutathione and ascorbate levels in Arabidopsis plants exposed to different light intensities. BMC Plant Biology, 13, 104. https://doi.org/10.1186/1471-2229-13-104
International Union of Soil Sciences Working Group. (2022). World reference base for soil resources: International soil classification system for naming soils and creating legends for soil maps (4th ed.). IUSS. https://wrb.isric.org/files/WRB_fourth_edition_2022-12-18.pdf
Izumi, H., Ito, T., & Yoshida, Y. (1992). Effect of light content intensity during the growing period on ascorbic acid and its histochemical distribution of satsuma in the leaves mandarin and peel , and fruit quality. Journal of the Japanese Society for Horticultural Science, 61(1), 7–15. https://doi.org/10.2503/jjshs.61.7
Jahan, M. S., Guo, S., Baloch, A. R., Sun, J., Shu, S., Wang, Y., Ahammed, G. J., Kabir, K., & Roy, R. (2020). Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism, and oxidative stress tolerance in tomato seedlings. Ecotoxicology and Environmental Safety, 197, 110593. https://doi.org/10.1016/j.ecoenv.2020.110593
Jakhar, S., & Mukherjee, D. (2014). Chloroplast pigments, proteins, lipid peroxidation, and activities of antioxidative enzymes during maturation and senescence of leaves and reproductive organs of Cajanus cajan L. Physiology and Molecular Biology of Plants, 20, 171–180. https://doi.org/10.1007/s12298-013-0219-x
Kanjana, D. (2020). Foliar application of magnesium oxide nanoparticles on nutrient element concentrations, growth, physiological, and yield parameters of cotton. Journal of Plant Nutrition, 43(20), 3035–3049. https://doi.org/10.1080/01904167.2020.1799001
Lewin, M. (Ed.) (2007). Handbook of fiber chemistry (3rd ed.). CRC Press.
Li, X. (2012). Improved pyrogallol autoxidation method: A reliable and cheap superoxide-scavenging assay suitable for all antioxidants. Journal of Agricultural and Food Chemistry, 60(25), 6418–6424. https://doi.org/10.1021/jf204970r
Liu, K.-H., Diener, A., Lin, Z., Liu, C., & Sheen, J. (2020). Primary nitrate responses mediated by calcium signalling and diverse protein phosphorylation. Journal of Experimental Botany, 71(15), 4428–4441. https://doi.org/10.1093/jxb/eraa047
Liu, K., Takagi, H., & Yang, Z. (2013). Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem. Composites Part A: Applied Science and Manufacturing, 45, 14–22. https://doi.org/10.1016/j.compositesa.2012.09.006
Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469–474. https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
Marschner, P. (Ed.) (2012). Marschner’s mineral nutrition of higher plants (3rd ed.). Academic Press. https://doi.org/10.1016/C2009-0-63043-9
Mattila, T. J., & Rajala, J. (2022). Estimating cation exchange capacity from agronomic soil tests: Comparing Mehlich-3 and ammonium acetate sum of cations. Soil Science Society of America Journal, 86(1), 47–50. https://doi.org/10.1002/saj2.20340
Meteorological Climatological and Geophysical Agency. (2023). Data iklim [Climate data]. https://dataonline.bmkg.go.id/home
Miwa, K., & Fujiwara, T. (2010). Boron transport in plants: Co-ordinated regulation of transporters. Annals of Botany, 105(7), 1103–1108. https://doi.org/10.1093/aob/mcq044
Munawar, S. S., Umemura, K., & Kawai, S. (2007). Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. Journal of Wood Science, 53, 108–113. https://doi.org/10.1007/s10086-006-0836-x
Negash, M., Starr, M., & Kanninen, M. (2013). Allometric equations for biomass estimation of Enset (Ensete ventricosum) grown in indigenous agroforestry systems in the Rift Valley escarpment of southern-eastern Ethiopia. Agroforestry Systems, 87, 571–581. https://doi.org/10.1007/s10457-012-9577-6
Pandey, N. (2018). Role of plant nutrients in plant growth and physiology. In M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar, & B. Hawrylak-Nowak (Eds.), Plant nutrients and abiotic stress tolerance (pp. 51-93). Springer. https://doi.org/10.1007/978-981-10-9044-8_2
Pelmenschikov, V., & Siegbahn, P. E. M. (2005). Copper−zinc superoxide dismutase: Theoretical insights into the catalytic mechanism. Inorganic Chemistry, 44(9), 3311–3320. https://doi.org/10.1021/ic050018g
Petronilo, J., Cagasan, E., Catalla, J., Fernandez, L., Galvez, L., Cocal, O., Javellana, M. L., Castronuevo, A., Gray, M. J., Radek, M., Chua, A., Prodigo, V., Peñera, C., Dolatre, E., & Gopez, G. (2016). Abaca sustainability manual. Philippine Fiber Industry Development Authority and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH.
Pitre, F. E., Lafarguette, F., Boyle, B., Pavy, N., Caron, S., Dallaire, N., Poulin, P. L., Ouellet, M., Morency, M. J., Wiebe, N., Ly Lim, E., Urbain, A., Mouille, G., Cooke, J. E. K., & MacKay, J. J. (2010). High nitrogen fertilization and stem leaning have overlapping effects on wood formation in poplar but invoke largely distinct molecular pathways. Tree Physiology, 30(10), 1273–1289. https://doi.org/10.1093/treephys/tpq073
Raza, M. A., Feng, L. Y., Iqbal, N., Khan, I., Meraj, T. A., Xi, Z. J., Naeem, M., Ahmed, S., Sattar, M. T., Chen, Y. K., Huan, C. H., Ahmed, M., Yang, F., & Yang, W. (2020). Effects of contrasting shade treatments on the carbon production and antioxidant activities of soybean plants. Functional Plant Biology, 47(4), 342–354. https://doi.org/10.1071/FP19213
Raza, M. A., Feng, L. Y., van der Werf, W., Iqbal, N., Khan, I., Hassan, M. J., Ansar, M., Chen, Y. K., Xi, Z. J., Shi, J. Y., Ahmed, M., Yang, F., & Yang, W. (2019). Optimum leaf defoliation: A new agronomic approach for increasing nutrient uptake and land equivalent ratio of maize soybean relay intercropping system. Field Crops Research, 244, 107647. https://doi.org/10.1016/j.fcr.2019.107647
Sadak, M. S., Bakry, A. B., & Taha, M. H. (2019). Physiological role of trehalose on growth, some biochemical aspects and yield of two flax varieties grown under drought stress. Plant Archives, 19(Supplement 2), 215–225.
Sadak, M. S., & Ramadan, A. A. E.-M. (2021). Impact of melatonin and tryptophan on water stress tolerance in white lupine (Lupinus termis L.). Physiology and Molecular Biology of Plants, 27, 469–481. https://doi.org/10.1007/s12298-021-00958-8
Saleem, M. H., Rehman, M., Zahid, M., Imran, M., Xiang, W., & Liu, L. (2019). Morphological changes and antioxidative capacity of jute (Corchorus capsularis, Malvaceae) under different color light-emitting diodes. Brazilian Journal of Botany, 42, 581–590. https://doi.org/10.1007/s40415-019-00565-8
Sankaranarayanan, K., Praharaj, C. S., Nalayini, P., Bandyopadhyay, K. K., & Gopalakrishnan, N. (2010). Effect of magnesium, zinc, iron and boron application on yield and quality of cotton (Gossypium hirsutum). Indian Journal of Agricultural Sciences, 80(8), 699–703.
Sarker, J. R., Singh, B. P., He, X., Fang, Y., Li, G. D., Collins, D., & Cowie, A. L. (2017). Tillage and nitrogen fertilization enhanced belowground carbon allocation and plant nitrogen uptake in a semi-arid canola crop–soil system. Scientific Reports, 7, 10726. https://doi.org/10.1038/s41598-017-11190-4
Sarker, S. R., Chowdhury, M. A. H., Mohiuddin, K. M., & Saha, B. K. (2008). Influence of different levels of potassium on yield and fibre strength of jute. Journal of Agroforestry and Environment, 6(1), 39–42.
Sasaki, A., Kanzaki, M., Mochizuki, K., Choocharoen, C., & Preechapanya, P. (2020). Aboveground biomass and carbon sequestration potential of tea and shade trees in Miang tea gardens, an agroforestry system in Northern Thailand. Tropics, 29(4), 105–119. https://doi.org/10.3759/tropics.MS20-01
Sawan, Z. M., Mahmoud, M. H., & El-Guibali, A. H. (2008). Influence of potassium fertilization and foliar application of zinc and phosphorus on growth, yield components, yield and fiber properties of Egyptian cotton (Gossypium barbadense L.). Journal of Plant Ecology, 1(4), 259–270. https://doi.org/10.1093/jpe/rtn021
Senthilkumar, M., Amaresan, N., & Sankaranarayanan, A. (2021). Plant-microbe interactions: Laboratory techniques. Humana. https://doi.org/10.1007/978-1-0716-1080-0
Shafiq, I., Hussain, S., Hassan, B., Raza, A., Ahmad, I., Asghar, M. A., Wang, Z., Tan, T., Li, S., Tan, X., Ghafoor, A., Manaf, A., Ansar, M., Yang, F., & Yang, W. (2021). Crop responses and management strategies under shade and drought stress. Photosynthetica, 59(4), 664–682. https://doi.org/10.32615/ps.2021.057
Shimazaki, K.-I., Doi, M., Assmann, S. M., & Kinoshita, T. (2007). Light regulation of stomatal movement. Annual Review of Plant Biology, 58, 219–247. https://doi.org/10.1146/annurev.arplant.57.032905.105434
Siles, P., Bustamante, O., Valdivia, E., Burkhardt, J., & Staver, C. (2013). Photosynthetic performance of banana (‘Gros Michel’, AAA) under a natural shade gradient. Acta Horticulturae, 986, 71–77. https://doi.org/10.17660/actahortic.2013.986.5
Strickler, G. S. (1959). Use of the densiometer to estimate density of forest canopy on permanent sample plots. Pacific Northwest Old Series Research Notes, 180, 1–5.
Sudjindro. (2008). Perbaikan ketahanan abaka terhadap Fusarium dan prospek pengembangannya [Improvement of the abaca’s resilience of the Fusarium and its development prospects]. Perspektif, 7(2), 80–91.
Sulaeman., Suparto., & Eviati. (2005). Petunjuk teknis: Analisis kimia tanah, tanaman, air, dan pupuk [Technical instructions: Chemical analysis of soil, plants, water, and fertilizers]. Balai Penelitian Tanah.
Suryanto, P., Putra, E. T. S., Kurniawan, S., Suwignyo, B., & Sukirno, D. A. P. (2014). Maize response at three levels of shade and its improvement with intensive agro forestry regimes in Gunung Kidul, Java, Indonesia. Procedia Environmental Sciences, 20, 370–376. https://doi.org/10.1016/j.proenv.2014.03.047
Tian, Y., Sacharz, J., Ware, M. A., Zhang, H., & Ruban, A. V. (2017). Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light. Journal of Experimental Botany, 68(15), 4249–4262. https://doi.org/10.1093/jxb/erx213
United States Department of Agriculture. (1999). Soil quality test kit guide. USDA. https://efotg.sc.egov.usda.gov/references/public/WI/Soil_Quality_Test_Kit_Guide.pdf
Wang, H., Cai, Y., Deng, W., Li, C., Dong, Y., Zhou, L., Sun, J., Li, C., Song, B., Zhang, F., & Zhou, G. (2023). The effects of tree canopy structure and tree coverage ratios on urban air temperature based on ENVI-Met. Forests, 14(1), 80. https://doi.org/10.3390/f14010080
Wang, Y.-B., Huang, R.-D., & Zhou, Y.-F. (2021). Effects of shading stress during the reproductive stages on photosynthetic physiology and yield characteristics of peanut (Arachis hypogaea Linn.). Journal of Integrative Agriculture, 20(5), 1250–1265. https://doi.org/10.1016/S2095-3119(20)63442-6
Xing, Y., Du, X., Xu, X., Wang, F., Jiang, Y., Tian, G., Zhu, Z., Ge, S., & Jiang, Y. (2022). A balance between calcium and nitrate promotes the growth of M9T337 apple rootstocks. Scientia Horticulturae, 300, 111063. https://doi.org/10.1016/j.scienta.2022.111063
Yokokura, M. (1992). Early agriculture in Southeast Asia. Southeast Asian Studies, 30(3), 272–314.
Zhang, T.-Y., Li, F.-C., Fan, C.-M., Li, X., Zhang, F.-F., & He, J.-M. (2017). Role and interrelationship of MEK1-MPK6 cascade, hydrogen peroxide, and nitric oxide in darkness-induced stomatal closure. Plant Science, 262, 190–199. https://doi.org/10.1016/j.plantsci.2017.06.010
Zheng, L., Huang, F., Narsai, R., Wu, J., Giraud, E., He, F., Cheng, L., Wang, F., Wu, P., Whelan, J., & Shou, H. (2009). Physiological and transcriptome analysis of iron and phosphorus interaction in rice seedlings. Plant Physiology, 151(1), 262–274. https://doi.org/10.1104/pp.109.141051
Zhou, B., Wang, J., Guo, Z., Tan, H., & Zhu, X. (2006). A simple colorimetric method for determination of hydrogen peroxide in plant tissues. Plant Growth Regulation, 49, 113–118. https://doi.org/10.1007/s10725-006-9000-2
ISSN 1511-3701
e-ISSN 2231-8542