PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 47 (3) Aug. 2024 / JTAS-2976-2023

 

Novel Sustainable Bio-fertilizer Formulated with Mangrove-associated Bacteria Enhances Duckweed Growth and Protein Content

Nabila Huda Hamdan, Maryam Mohamed Rehan, Shinjiro Ogita and Nazariyah Yahaya

Pertanika Journal of Tropical Agricultural Science, Volume 47, Issue 3, August 2024

DOI: https://doi.org/10.47836/pjtas.47.3.14

Keywords: Bio-fertilizer, duckweed, Lukut river Malaysia, mangrove-associated bacteria, nitrogen-fixing bacteria, phosphate-solubilizing bacteria, potassium-solubilizing bacteria

Published on: 27 August 2024

Duckweed is a future food and a source of affordable protein that has the potential to replace animal protein. This study aims to formulate a bio-fertilizer consisting of mangrove-associated bacteria to boost the growth and protein of duckweeds as a sustainable approach to increase plant-based protein yields. The culture-depending technique was performed by using Aleksandrow agar, Pikovskaya’s agar, and Jensen agar to screen potassium-solubilizing bacteria, phosphate-solubilizing bacteria and nitrogen-fixing bacteria, respectively, from mangrove soil sediments. Mangrove-associated bacteria that are close to Acinetobacter radioresistens, Brachybacterium paraconglomeratum, and Enterobacter cloacae, which are known as nitrogen-fixing bacteria, Klebsiella quasipneumoniae, Bacillus tropicus, and Paenibacillus pasadenensis known as potassium-solubilizing bacteria, and Bacillus cereus and Bacillus thuringiensis known as phosphate-solubilizing bacteria were identified through 16S rRNA gene sequencing. After that, three sets of bio-fertilizers were randomly formulated. Each set consisted of nitrogen-fixing bacteria, potassium- and phosphate-solubilizing bacteria, as well as commercial compost as a carrier. These formulated bio-fertilizers were evaluated for plant growth promotion and protein production on duckweed plants under temperatures between 26 and 30°C. The results showed that each set of our formulated bio-fertilizer can increase the nitrogen (N), phosphorus (P), and potassium (K), duckweed growth, and protein content when compared to the control group. It indicates that bio-fertilizers formulated with mangrove-associated bacteria and high NPK contents could enhance the growth of duckweed as well as its protein content, which could supply our future plant-based protein sustainably.

  • Adame, M. F., Santini, N. S., Torres-Talamante, O., & Rogers, K. (2022). Mangrove sinkholes (cenotes) of the Yucatan Peninsula, a global hotspot of carbon sequestration. Biology Letters, 17, 20210037. https://doi.org/10.1098/rsbl.2021.0037

  • Ali, N., & Pati, A. M. (2023). PGPR mediated enhancement of saffron corm production in non-traditional area of Himachal Pradesh, India. South African Journal of Botany, 161, 434–443. https://doi.org/10.1016/j.sajb.2023.08.019

  • Ansari, F. A., Ahmad, I., & Pichtel, J. (2023). Synergistic effects of biofilm-producing PGPR strains on wheat plant colonization, growth, and soil resilience under drought stress. Saudi Journal of Biological Sciences, 30(6), 103664. https://doi.org/10.1016/j.sjbs.2023.103664

  • Appenroth, K.-J., Sree, K. S., Bog, M., Ecker, J., Seeliger, C., Bohm, V., Lorkowski, S., Sommer, K., Vetter, W., Tolzin-Banasch, K., Kirmse, R., Leiterer, M., Dawczynski, C., Liebisch, G., & Jahreis, G. (2018). Nutritional value of the duckweed species of the genus Wolffia (Lemnaceae) as Human Food. Frontiers in Chemistry, 6, 483. https://doi.org/10.3389/fchem.2018.00483

  • Ashfaq, M. Y., Da’na, D. A., & Al-Ghouti, M. A. (2022). Application of MALDI-TOF MS for identification of environmental bacteria: A review. Journal of Environmental Management, 305, 114359. https://doi.org/10.1016/j.jenvman.2021.114359

  • Awasthi, A., Bharti, N., Nair, P., Singh, R., Shukla, A. K., Gupta, M. M., Darokar, M. P., & Kalra, A. (2011). Synergistic effect of Glomus mosseae and nitrogen fixing Bacillus subtilis strain Daz26 on artemisinin content in Artemisia annua L. Applied Soil Ecology, 49, 125–130. https://doi.org/10.1016/j.apsoil.2011.06.005

  • Behera, B. C., Sethi, B. K., Mishra, R. R., Dutta, S. K., & Thatoi, H. N. (2017). Microbial cellulases - Diversity and biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology, 15(1), 197–210. https://doi.org/10.1016/j.jgeb.2016.12.001

  • Billore, S. D., Ramesh, A., Vyas, A. K., & Joshi, O. P. (2009). Potassium-use efficiencies and economic optimization as influenced by levels of potassium and soybean (Glycine max) genotypes under staggered planting. Indian Journal of Agricultural Sciences, 79(7), 510–514.

  • Castro, R. A., Dourado, M. N., de Almeida, J. R., Lacava, P. T., Nave, A., de Melo, I. S., de Azevedo, J. L., & Quecine, M. C. (2018). Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth. Brazilian Journal of Microbiology, 49(1), 59–66. https://doi.org/10.1016/j.bjm.2017.04.002

  • Chakrabarti, R., Clark, W. D., Sharma, J. G., Goswami, R. K., Shrivastav, A. K., & Tocher, D. R. (2018). Mass production of Lemna minor and its amino acid and fatty acid profiles. Frontiers in Chemistry, 6, 479. https://doi.org/10.3389/fchem.2018.00479

  • Chamkhi, I., Sbabou, L., & Aurag, J. (2023). Improved growth and quality of saffron (Crocus sativus L.) in the field conditions through inoculation with selected native plant growth-promoting rhizobacteria (PGPR). Industrial Crops and Products, 197, 116606. https://doi.org/10.1016/j.indcrop.2023.116606

  • Chandra, P., Wunnava, A., Verma, P., Chandra, A., & Sharma, R. K. (2021). Strategies to mitigate the adverse effect of drought stress on crop plants - Influences of soil bacteria: A review. Pedosphere, 31(3), 496–509. https://doi.org/10.1016/S1002-0160(20)60092-3

  • Cheng, H., Zhang, D., Ren, L., Song, Z., Li, Q., Wu, J., Fang, W., Huang, B., Yan, D., Li, Y., Wang, Q., & Cao, A. (2021). Bio-activation of soil with beneficial microbes after soil fumigation reduces soil-borne pathogens and increases tomato yield. Environmental Pollution, 283, 117160. https://doi.org/10.1016/j.envpol.2021.117160

  • Chin, C. F. S., Furuya, Y., Zainudin, M. H. M., Ramli, N., Hassan, M. A., Tashiro, Y., & Sakai, K. (2017). Novel multifunctional plant growth–promoting bacteria in co-compost of palm oil industry waste. Journal of Bioscience and Bioengineering, 124(5), 506–513. https://doi.org/10.1016/j.jbiosc.2017.05.016

  • Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K., & Paul, E. (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19(4), 988–995. https://doi.org/10.1111/gcb.12113

  • David, A., & Rostkowski, P. (2020). Analytical techniques in metabolomics. In D. Álvarez-Muñoz & M. Farré (Eds.), Environmental metabolomics: Applications in field and laboratory studies to understand from exposome to metabolome (pp. 35–64). Elsevier. https://doi.org/10.1016/B978-0-12-818196-6.00002-9

  • de Beukelaar, M. F. A., Zeinstra, G. G., Mes, J. J., & Fischer, A. R. H. (2019). Duckweed as human food. The influence of meal context and information on duckweed acceptability of Dutch consumers. Food Quality and Preference, 71, 76–86. https://doi.org/10.1016/j.foodqual.2018.06.005

  • Deepa, C. K., Dastager, S. G., & Pandey, A. (2010). Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World Journal of Microbiology and Biotechnology, 26, 1233–1240. https://doi.org/10.1007/s11274-009-0293-y

  • dos Santos Goncalves, A. C., Rezende, R. P., de Lima Silva Marques, E., Soares, M. R., Dias, J. C. T., Romano, C. C., Costa, M. S., Dotivo, N. C., de Moura, S. R., de Oliveira, I. S., & Pirovani, C. P. (2020). Biotechnological potential of mangrove sediments: Identification and functional attributes of thermostable and salinity-tolerant β-glucanase. International Journal of Biological Macromolecules, 147, 521–526. https://doi.org/10.1016/j.ijbiomac.2020.01.078

  • Egamberdieva, D., Kamilova, F., Validov, S., Gafurova, L., Kucharova, Z., & Lugtenberg, B. (2008). High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environmental Microbiology, 10(1), 1–9. https://doi.org/10.1111/j.1462-2920.2007.01424.x

  • Etesami, H., Emami, S., & Alikhani, H. A. (2017). Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects - A review. Journal of Soil Science and Plant Nutrition, 17(4), 897-911. https://doi.org/10.4067/S0718-95162017000400005

  • Fatima, F., Chaudhary, I., Ali, J., Rastogi, S., & Pathak, N. (2011). Microbial DNA extraction from soil by different methods and its PCR amplification. Biochemical and Cellular Archives, 11(1), 85-90.

  • Ghiglione, B., Haim, M. S., Penzotti, P., Brunetti, F., D’ Amico González, G., Di Conza, J., Figueroa-Espinosa, R., Nuñez, L., Razzolini, M. T. P., Fuga, B., Esposito, F., Horden, M. V., Lincopan, N., Gutkind, G., Power, P., & Dropa, M. (2021). Characterization of emerging pathogens carrying blaKPC-2 gene in IncP-6 plasmids isolated from urban sewage in Argentina. Frontiers in Cellular and Infection Microbiology, 11, 722536. https://doi.org/10.3389/fcimb.2021.722536

  • Gomez-Aparicio, L., Dominguez-Begines, J., Villa-Sanabria, E., García, L. V, & Muñoz-Pajares, A. J. (2022). Tree decline and mortality following pathogen invasion alters the diversity, composition and network structure of the soil microbiome. Soil Biology and Biochemistry, 166, 108560. https://doi.org/10.1016/j.soilbio.2022.108560

  • Gontia, I., Kavita, K., Schmid, M., Hartmann, A., & Jha, B. (2011). Brachybacterium saurashtrense sp. nov., a halotolerant root-associated bacterium with plant growth-promoting potential. International Journal of Systematic and Evolutionary Microbiology, 61(12), 2799–2804. https://doi.org/10.1099/ijs.0.023176-0

  • Govindasamy, V., Senthilkumar, M., Magheshwaran, V., Kumar, U., Bose, P., Sharma, V., & Annapurna, K. (2011). Bacillus and Paenibacillus spp.: Potential PGPR for sustainable agriculture BT. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria (pp. 333–364). Springer. https://doi.org/10.1007/978-3-642-13612-2_15

  • Grady, E. N., MacDonald, J., Liu, L., Richman, A., & Yuan, Z.-C. (2016). Current knowledge and perspectives of Paenibacillus: A review. Microbial Cell Factories, 15, 203. https://doi.org/10.1186/s12934-016-0603-7

  • Gu, X., Zhao, H., Peng, C., Guo, X., Lin, Q., Yang, Q., & Chen, L. (2022). The mangrove blue carbon sink potential: Evidence from three net primary production assessment methods. Forest Ecology and Management, 504, 119848. https://doi.org/10.1016/j.foreco.2021.119848

  • Hasan, M. R., & Chakrabarti, R. (2009). Floating aquatic macrophytes - Duckweeds. In Use of algae and aquatic macrophytes as feed in small-scale aquaculture: A review (No. 531, pp. 29–51). Food and Agriculture Organization of the United Nations.

  • Idris, E. E., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20(6), 619–626. https://doi.org/10.1094/MPMI-20-6-0619

  • Iniesta-Pallarés, M., Brenes-Álvarez, M., Lasa, A. V, Fernández-López, M., Álvarez, C., Molina-Heredia, F. P., & Mariscal, V. (2023). Changes in rice rhizosphere and bulk soil bacterial communities in the Doñana wetlands at different growth stages. Applied Soil Ecology, 190, 105013. https://doi.org/10.1016/j.apsoil.2023.105013

  • Kamyab, H., Chelliapan, S., Din, M. F. M., Shahbazian-Yassar, R., Rezania, S., Khademi, T., Kumar, A., & Azimi, M. (2017). Evaluation of Lemna minor and Chlamydomonas to treat palm oil mill effluent and fertilizer production. Journal of Water Process Engineering, 17, 229–236. https://doi.org/10.1016/j.jwpe.2017.04.007

  • Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23, 101487. https://doi.org/10.1016/j.bcab.2019.101487

  • Kumar, A., Maurya, B. R., & Raghuwanshi, R. (2014). Isolation and characterization of PGPR and their effect on growth, yield, and nutrient content in wheat (Triticum aestivum L.). Biocatalysis and Agricultural Biotechnology, 3(4), 121–128. https://doi.org/10.1016/j.bcab.2014.08.003

  • Kumar, M., Chakdar, H., Pandiyan, K., Thapa, S., Shahid, M., Singh, A., Srivastava, A. K., & Saxena, A. K. (2022). Bacterial chitinases: Genetics, engineering and applications. World Journal of Microbiology and Biotechnology, 38, 252. https://doi.org/10.1007/s11274-022-03444-9

  • Li, Y., Zhang, F., Daroch, M., & Tang, J. (2016). Positive effects of duckweed polycultures on starch and protein accumulation. Bioscience Reports, 36(5), e00380. https://doi.org/10.1042/BSR20160158

  • Liu, X., Zhang, Y., Jiang, Z., Yue, X., Liang, J., Yang, Q., Li, J., & Li, N. (2023). Micro-moistening irrigation combined with bio-organic fertilizer: An adaptive irrigation and fertilization strategy to improve soil environment, edible Rose yield, and nutritional quality. Industrial Crops and Products, 196, 116487. https://doi.org/10.1016/j.indcrop.2023.116487

  • Makino, A., Nakai, R., Yoneda, Y., Toyama, T., Tanaka, Y., Meng, X.-Y., Mori, K., Ike, M., Morikawa, M., Kamagata, Y., & Tamaki, H. (2022). Isolation of aquatic plant growth-promoting bacteria for the floating plant duckweed (Lemna minor). Microorganisms, 10(8), 1564. https://doi.org/10.3390/microorganisms10081564

  • Mali, S. D., & Attar, Y. C. (2021). Formulation of cost-effective agro residues containing potassium solubilizing bacterial bio-inoculants using response surface methodology. Biocatalysis and Agricultural Biotechnology, 35, 102113. https://doi.org/10.1016/j.bcab.2021.102113

  • Meena, V. S., Maurya, B. R., & Verma, J. P. (2014). Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiological Research, 169(5-6), 337–347. https://doi.org/10.1016/j.micres.2013.09.003

  • Meena, V. S., Maurya, B. R., Verma, J. P., Aeron, A., Kumar, A., Kim, K., & Bajpai, V. K. (2015). Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecological Engineering, 81, 340–347. https://doi.org/10.1016/j.ecoleng.2015.04.065

  • Morrissette, H. K., Baez, S. K., Beers, L., Bood, N., Martinez, N. D., Novelo, K., Andrews, G., Balan, L., Beers, C. S., Betancourt, S. A., Blanco, R., Bowden, E., Burns-Perez, V., Carcamo, M., Chevez, L., Crooks, S., Feller, I. C., Galvez, G., Garbutt, K., … Canty, S. W. J. (2023). Belize blue carbon: Establishing a national carbon stock estimate for mangrove ecosystems. Science of The Total Environment, 870, 161829. https://doi.org/10.1016/j.scitotenv.2023.161829

  • Muñoz-García, A., Arbeli, Z., Boyacá-Vásquez, V., & Vanegas, J. (2022). Metagenomic and genomic characterization of heavy metal tolerance and resistance genes in the rhizosphere microbiome of Avicennia germinans in a semi-arid mangrove forest in the tropics. Marine Pollution Bulletin, 184, 114204. https://doi.org/10.1016/j.marpolbul.2022.114204

  • Naseem, S., Bhat, S. U., Gani, A., & Bhat, F. A. (2020). Perspectives on utilization of macrophytes as feed ingredient for fish in future aquaculture. Reviews in Aquaculture, 13(1), 282–300. https://doi.org/10.1111/raq.12475

  • Sarbani, N. M. M., & Yahaya, N. (2022). Advanced development of bio-fertilizer formulations using microorganisms as inoculant for sustainable agriculture and environment - A review. Malaysian Journal of Science Health and Technology, 8(1), 92–101. https://doi.org/10.33102/mjosht.v8i1.228

  • Parmar, P., & Sindhu, S. S. (2013). Potassium solubilization by rhizosphere bacteria: Influence of nutritional and environmental conditions. Journal of Microbiology Research, 3(1), 25–31. https://doi.org/10.5923/j.microbiology.20130301.04

  • Petersen, F., Demann, J., Restemeyer, D., Olfs, H.-W., Westendarp, H., Appenroth, K.-J., & Ulbrich, A. (2022). Influence of light intensity and spectrum on duckweed growth and proteins in a small-scale, re-circulating indoor vertical farm. Plants, 11(8), 1010. https://doi.org/10.3390/plants11081010

  • Pham, D. N., Mai, D. H. A., Nguyen, A. D., Chau, T. H. T., & Lee, E. Y. (2022). Development of an engineered methanotroph-based microbial platform for biocatalytic conversion of methane to phytohormone for sustainable agriculture. Chemical Engineering Journal, 429, 132522. https://doi.org/10.1016/j.cej.2021.132522

  • Pii, Y., Mimmo, T., Tomasi, N., Terzano, R., Cesco, S., & Crecchio, C. (2015). Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biology and Fertility of Soils, 51, 403–415. https://doi.org/10.1007/s00374-015-0996-1

  • Radulovic, O., Petrić, M., Raspor, M., Stanojević, O., Janakiev, T., Tadić, V., & Stanković, S. (2018). Culture-dependent analysis of 16S rRNA sequences associated with the rhizosphere of Lemna minor and assessment of bacterial phenol-resistance: Plant/bacteria system for potential bioremediation - Part II. Polish Journal of Environmental Studies, 28(2), 811–822. https://doi.org/10.15244/pjoes/81687

  • Ramakrishna, W., Rathore, P., Kumari, R., & Yadav, R. (2020). Brown gold of marginal soil: Plant growth promoting bacteria to overcome plant abiotic stress for agriculture, biofuels, and carbon sequestration. Science of The Total Environment, 711, 135062. https://doi.org/10.1016/j.scitotenv.2019.135062

  • Ramesh, A., Sharma, S. K., Sharma, M. P., Yadav, N., & Joshi, O. P. (2014). Plant growth-promoting traits in Enterobacter cloacae subsp. dissolvens MDSR9 isolated from soybean rhizosphere and its impact on growth and nutrition of soybean and wheat upon inoculation. Agricultural Research, 3, 53–66. https://doi.org/10.1007/s40003-014-0100-3

  • Saha, B., Saha, S., Das, A., Bhattacharyya, P. K., Basak, N., Sinha, A. K., & Poddar, P. (2017). Biological nitrogen fixation for sustainable agriculture. In V. S. Meena, P. K. Mishra, J. K. Bisht, & A. Pattanayak (Eds.), Agriculturally Important Microbes for Sustainable Agriculture (pp. 81–128). Springer. https://doi.org/10.1007/978-981-10-5343-6_4

  • Sahoo, G., Ansari, Z. A., Shaikh, J. B., Varik, S. U., & Gauns, M. (2018). Epibiotic communities (microalgae and meiofauna) on the pneumatophores of Avicennia officinalis (L.). Estuarine, Coastal and Shelf Science, 207, 391–401. https://doi.org/10.1016/j.ecss.2017.08.018

  • Shahwar, D., Mushtaq, Z., Mushtaq, H., Alqarawi, A. A., Park, Y., Alshahrani, T. S., & Faizan, S. (2023). Role of microbial inoculants as bio fertilizers for improving crop productivity: A review. Heliyon, 9(6), e16134. https://doi.org/10.1016/j.heliyon.2023.e16134

  • Shuvro, S. K., Jog, R., & Morikawa, M. (2023). Diazotrophic bacterium Azotobacter vinelandii as a mutualistic growth promoter of an aquatic plant: Lemna minor. Plant Growth Regulation, 100, 171–180. https://doi.org/10.1007/s10725-022-00948-0

  • Smaill, S. J., Leckie, A. C., Clinton, P. W., & Hickson, A. C. (2010). Plantation management induces long-term alterations to bacterial phytohormone production and activity in bulk soil. Applied Soil Ecology, 45(3), 310–314. https://doi.org/10.1016/j.apsoil.2010.03.003

  • Soetan, K. O., Olaiya, C. O., & Oyewole, O. E. (2009). The importance of mineral elements for humans, domestic animals and plants: A review. African Journal of Food Science, 4(5), 200–222.

  • Sreelekshmi, S., Nandan, S. B., Kaimal, S. V, Radhakrishnan, C. K., & Suresh, V. R. (2020). Mangrove species diversity, stand structure and zonation pattern in relation to environmental factors - A case study at Sundarban delta, east coast of India. Regional Studies in Marine Science, 35, 101111. https://doi.org/10.1016/j.rsma.2020.101111

  • Stegelmeier, A. A., Rose, D. M., Joris, B. R., & Glick, B. R. (2022). The use of PGPB to promote plant hydroponic growth. Plants, 11(20), 2783. https://doi.org/10.3390/plants11202783

  • Stella, M., Theeba, M., & Illani, Z. I. (2019). Organic fertilizer amended with immobilized bacterial cells for extended shelf-life. Biocatalysis and Agricultural Biotechnology, 20, 101248. https://doi.org/10.1016/j.bcab.2019.101248

  • Sun, F., Ou, Q., Wang, N., Guo, Z. X., Ou, Y., Li, N., & Peng, C. (2020). Isolation and identification of potassium-solubilizing bacteria from Mikania micrantha rhizospheric soil and their effect on M. micrantha plants. Global Ecology and Conservation, 23, e01141. https://doi.org/10.1016/j.gecco.2020.e01141

  • Suzuki, W., Sugawara, M., Miwa, K., & Morikawa, M. (2014). Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce). Journal of Bioscience and Bioengineering, 118(1), 41–44. https://doi.org/10.1016/j.jbiosc.2013.12.007

  • Tahami, M. K., Jahan, M., Khalilzadeh, H., & Mehdizadeh, M. (2017). Plant growth promoting rhizobacteria in an ecological cropping system: A study on basil (Ocimum basilicum L.) essential oil production. Industrial Crops and Products, 107, 97–104. https://doi.org/10.1016/j.indcrop.2017.05.020

  • Talaat, N. B. (2019). Effective microorganisms: An innovative tool for inducing common bean (Phaseolus vulgaris L.) salt-tolerance by regulating photosynthetic rate and endogenous phytohormones production. Scientia Horticulturae, 250, 254–265. https://doi.org/10.1016/j.scienta.2019.02.052

  • Tang, J., Zhang, Y., Cui, Y., & Ma, J. (2015). Effects of a rhizobacterium on the growth of and chromium remediation by Lemna minor. Environmental Science and Pollution Research International, 22, 9686–9693. https://doi.org/10.1007/s11356-015-4138-y

  • Tangapo, A. M., Astuti, D. I., & Aditiawati, P. (2018). Dynamics and diversity of cultivable rhizospheric and endophytic bacteria during the growth stages of cilembu sweet potato (Ipomoea batatas L. var. cilembu). Agriculture and Natural Resources, 52(4), 309–316. https://doi.org/10.1016/j.anres.2018.10.003

  • Toyama, T., Kuroda, M., Ogata, Y., Hachiya, Y., Quach, A., Tokura, K., Tanaka, Y., Mori, K., Morikawa, M., & Ike, M. (2017). Enhanced biomass production of duckweeds by inoculating a plant growth-promoting bacterium, Acinetobacter calcoaceticus P23, in sterile medium and non-sterile environmental waters. Water Science and Technology, 76(6), 1418–1428. https://doi.org/10.2166/wst.2017.296

  • Wang, J., Li, R., Zhang, H., Wei, G., & Li, Z. (2020). Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiology, 20, 38. https://doi.org/10.1186/s12866-020-1708-z

  • Yahaghi, Z., Shirvani, M., Nourbakhsh, F., de la Peña, T. C., Pueyo, J. J., & Talebi, M. (2018). Isolation and characterization of Pb-solubilizing bacteria and their effects on Pb uptake by Brassica juncea: Implications for microbe-assisted phytoremediation. Journal of Microbiology and Biotechnology, 28(7), 1156–1167. https://doi.org/10.4014/jmb.1712.12038

  • Yahaya, N., Hamdan, N. H., Zabidi, A. R., Mohamad, A. M., Suhaimi, M. L. H., Johari, M. A. A. M., Yahya, H. N., & Yahya, H. (2022). Duckweed as a future food: Evidence from metabolite profile, nutritional and microbial analyses. Future Foods, 5, 100128. https://doi.org/10.1016/j.fufo.2022.100128

  • Yamaga, F., Washio, K., & Morikawa, M. (2010). Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environmental Science and Technology, 44(16), 6470–6474. https://doi.org/10.1021/es1007017

  • Yamakawa, Y., Jog, R., & Morikawa, M. (2018). Effects of co-inoculation of two different plant growth-promoting bacteria on duckweed. Plant Growth Regulation, 86, 287–296. https://doi.org/10.1007/s10725-018-0428-y

  • Yoneda, Y., Yamamoto, K., Makino, A., Tanaka, Y., Meng, X.-Y., Hashimoto, J., Shin-Ya, K., Satoh, N., Fujie, M., Toyama, T., Mori, K., Ike, M., Morikawa, M., Kamagata, Y., & Tamaki, H. (2021). Novel plant-associated Acidobacteria promotes growth of common floating aquatic plants, duckweeds. Microorganisms, 9(6), 1133. https://doi.org/10.3390/microorganisms9061133

  • Zamioudis, C., & Pieterse, C. M. J. (2012). Modulation of host immunity by beneficial microbes. Molecular Plant-Microbe Interactions, 25(2), 139–150. https://doi.org/10.1094/MPMI-06-11-0179

  • Zechmeister-Boltenstern, S., Keiblinger, K. M., Mooshammer, M., Peñuelas, J., Richter, A., Sardans, J., & Wanek, W. (2015). The application of ecological stoichiometry to plant–microbial–soil organic matter transformations. Ecological Monographs, 85(2), 133–155. https://doi.org/10.1890/14-0777.1

  • Zhang, S., Zhang, M., Han, F., Liu, Z., Zhao, C., Lei, J., & Zhou, W. (2023). Enhanced degradation of petroleum in saline soil by nitrogen stimulation and halophilic emulsifying bacteria Bacillus sp. Z-13. Journal of Hazardous Materials, 459, 132102. https://doi.org/10.1016/j.jhazmat.2023.132102

  • Zhou, X., Zhang, J., Khashi u Rahman, M., Gao, D., Wei, Z., Wu, F., & Dini-Andreote, F. (2023). Interspecific plant interaction via root exudates structures the disease suppressiveness of rhizosphere microbiomes. Molecular Plant, 16(5), 849-864. https://doi.org/10.1016/j.molp.2023.03.009