Home / Regular Issue / JST Vol. 31 (1) Jan. 2023 / JST-3553-2022

 

Chitosan Nanocomposites as Wound Healing Materials: Advances in Processing Techniques and Mechanical Properties

Temitope T. Dele-Afolabi, Azmah Hanim Mohamed Ariff, Oluwatosin J. Ojo-Kupoluyi and Ebenezer Oluwatosin Atoyebi

Pertanika Journal of Science & Technology, Volume 31, Issue 1, January 2023

DOI: https://doi.org/10.47836/pjst.31.1.32

Keywords: Chitosan nanocomposite, mechanical properties, processing techniques, tissue regeneration, wound healing

Published on: 3 January 2023

This review discusses the increasing potential of chitosan nanocomposites as viable materials capable of targeting these debilitating factors. This review focuses on various techniques used to process chitosan nanocomposites and their mechanical properties. Chitosan nanocomposites are regarded as highly effective antimicrobials for the treatment of chronic wounds. Chitosan nanocomposites, such as chitosan/polyethylene and oxide/silica/ciprofloxacin, demonstrate efficient antibacterial activity and exhibit no cytotoxicity against Human Foreskin Fibroblast Cell Lines (HFF2). Other studies have also showcased the capacity of chitosan nanocomposites to accelerate and improve tissue regeneration through increment in the number of fibroblast cells and angiogenesis and reduction of the inflammation phase. The layer-by-layer technique has benefits, ensuring its suitability in preparing chitosan nanocomposites for drug delivery and wound dressing applications. While the co-precipitation route requires a cross-linker to achieve stability during processing, the solution-casting route can produce stable chitosan nanocomposites without a cross-linker. By using the solution casting method, fillers such as multi-walled carbon nanotubes (MWCNTs) and halloysite nanotubes (HTs) can be uniformly distributed in the chitosan, leading to improved mechanical properties. The antibacterial effects can be achieved with the introduction of AgNPs or ZnO. With the increasing understanding of the biological mechanisms that control these diseases, there is an influx in the introduction of novel materials into the mainstream wound care market.

  • Abbaspour, M., Makhmalzadeh, B. S., Rezaee, B., Shoja, S., & Ahangari, Z. (2015). Evaluation of the antimicrobial effect of chitosan/polyvinyl alcohol electrospun nanofibers containing mafenide acetate. Jundishapur Journal of Microbiology, 8(10), Article e24239. https://doi.org/10.5812/jjm.24239

  • Aguzzi, C., Sandri, G., Bonferoni, C., Cerezo, P., Rossi, S., Ferrari, F., Caramella, C., & Viseras, C. (2014). Solid state characterisation of silver sulfadiazine loaded on montmorillonite/chitosan nanocomposite for wound healing. Colloids and Surfaces B: Biointerfaces, 113, 152-157. https://doi.org/10.1016/j.colsurfb.2013.08.043

  • Aslam, M., Raza, Z. A., & Siddique, A. (2021). Fabrication and chemo-physical characterization of CuO/chitosan nanocomposite-mediated tricomponent PVA films. Polymer Bulletin, 78(4), 1955-1965. https://doi.org/10.1007/s00289-020-03194-4

  • Balaji, J., & Sethuraman, M. G. (2017). Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium. International Journal of Biological Macromolecules, 104, 1730-1739. https://doi.org/10.1016/j.ijbiomac.2017.03.115

  • Bedolla-Cázares, F., Hernández-Marcelo, P. E., Gómez-Hurtado, M. A., Rodríguez-García, G., Del Río, R. E., López-Castro, Y., Garcia-Merinos, J. P., Torres-Valencia, J. M., & González-Campos, J. B. (2017). Silver nanoparticles from AgNO3-affinin complex synthesized by an ecofriendly route: Chitosan-based electrospun composite production. Clean Technologies and Environmental Policy, 19(3), 897-906. https://doi.org/10.1007/s10098-016-1285-x

  • Boccaccini, A. R., & Ma, P. X. (Eds.). (2014). Tissue Engineering Using Ceramics and Polymers. Elsevier.

  • Boonkong, W., Petsom, A., & Thongchul, N. (2013). Rapidly stopping hemorrhage by enhancing blood clotting at an opened wound using chitosan/polylactic acid/polycaprolactone wound dressing device. Journal of Materials Science: Materials in Medicine, 24(6), 1581-1593. https://doi.org/10.1007/s10856-013-4864-y

  • Budnyak, T. M., Pylypchuk, I. V., Tertykh, V. A., Yanovska, E. S., & Kolodynska, D. (2015). Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Research Letters, 10(1), 1-10. https://doi.org/10.1186/s11671-014-0722-1

  • Budnyak, T. M., Yanovska, E. S., Kołodyńska, D., Sternik, D., Pylypchuk, I. V., Ischenko, M. V., & Tertykh, V. A. (2016). Preparation and properties of organomineral adsorbent obtained by sol–gel technology. Journal of Thermal Analysis and Calorimetry, 125(3), 1335-1351. https://doi.org/10.1007/s10973-016-5581-9

  • Celebi, H., & Kurt, A. (2015). Effects of processing on the properties of chitosan/cellulose nanocrystal films. Carbohydrate Polymers, 133, 284-293. https://doi.org/10.1016/j.carbpol.2015.07.007

  • Chen, C., Liu, P., & Lu, C. (2008). Synthesis and characterization of nano-sized ZnO powders by direct precipitation method. Chemical Engineering Journal, 144(3), 509-513. https://doi.org/10.1016/j.cej.2008.07.047

  • Chrissafis, K., Paraskevopoulos, K. M., Papageorgiou, G. Z., & Bikiaris, D. N. (2008). Thermal and dynamic mechanical behavior of bionanocomposites: Fumed silica nanoparticles dispersed in poly (vinyl pyrrolidone), chitosan, and poly (vinyl alcohol). Journal of Applied Polymer Science, 110(3), 1739-1749. https://doi.org/10.1002/app.28818

  • Dai, T., Tanaka, M., Huang, Y. Y., & Hamblin, M. R. (2011). Chitosan preparations for wounds and burns: Antimicrobial and wound-healing effects. Expert Review of Anti-Infective Therapy, 9(7), 857-879. https://doi.org/10.1586/eri.11.59

  • Darder, M., López-Blanco, M., Aranda, P., Aznar, A. J., Bravo, J., & Ruiz-Hitzky, E. (2006). Microfibrous chitosan - Sepiolite nanocomposites. Chemistry of Materials, 18(6), 1602-1610.

  • de Mesquita, J. P., Donnici, C. L., & Pereira, F. V. (2010). Biobased nanocomposites from layer-by-layer assembly of cellulose nanowhiskers with chitosan. Biomacromolecules, 11(2), 473-480. https://doi.org/10.1021/cm0523642

  • Denkbaş, E. U. R. B., Öztürk, E., Özdem&unknown; r, N., Keçec&unknown, K., & Agalar, C. (2004). Norfloxacin-loaded chitosan sponges as wound dressing material. Journal of Biomaterials Applications, 18(4), 291-303.

  • De Silva, R. T., Pasbakhsh, P., Goh, K. L., Chai, S. P., & Ismail, H. J. P. T. (2013). Physico-chemical characterisation of chitosan/halloysite composite membranes. Polymer Testing, 32(2), 265-271. https://doi.org/10.1016/j.polymertesting.2012.11.006

  • Dilamian, M., Montazer, M., & Masoumi, J. (2013). Antimicrobial electrospun membranes of chitosan/poly (ethylene oxide) incorporating poly (hexamethylene biguanide) hydrochloride. Carbohydrate Polymers, 94(1), 364-371. https://doi.org/10.1016/j.carbpol.2013.01.059

  • Dobrovolskaya, I. P., Yudin, V. E., Popryadukhin, P. V., Ivan’kova, E. M., Shabunin, A. S., Kasatkin, I. A., & Morgantie, P. (2018). Effect of chitin nanofibrils on electrospinning of chitosan-based composite nanofibers. Carbohydrate Polymers, 194, 260-266. https://doi.org/10.1016/j.carbpol.2018.03.074

  • Dresvyanina, E. N., Grebennikov, S. F., Elokhovskii, V. Y., Dobrovolskaya, I. P., Ivan’kova, E. M., Yudin, V. Е., Heppe, K., & Morganti, P. (2020). Thermodynamics of interaction between water and the composite films based on chitosan and chitin nanofibrils. Carbohydrate Polymers, 245, Article 116552. https://doi.org/10.1016/j.carbpol.2020.116552

  • El Achaby, M., Essamlali, Y., El Miri, N., Snik, A., Abdelouahdi, K., Fihri, A., Zahouily, M., & Solhy, A. (2014). Graphene oxide reinforced chitosan/polyvinylpyrrolidone polymer bio‐nanocomposites. Journal of Applied Polymer Science, 131(22), 1-11. https://doi.org/10.1002/app.41042

  • El-saied, H. A. A., & Ibrahim, A. M. (2020). Effective fabrication and characterization of eco-friendly nano chitosan capped zinc oxide nanoparticles for effective marine fouling inhibition. Journal of Environmental Chemical Engineering, 8(4), Article 103949. https://doi.org/10.1016/j.jece.2020.103949

  • Elsawy, M. A., Saad, G. R., & Sayed, A. M. (2016). Mechanical, thermal, and dielectric properties of poly (lactic acid)/chitosan nanocomposites. Polymer Engineering & Science, 56(9), 987-994. https://doi.org/10.1002/pen.24328

  • Fan, J., Shi, Z., Ge, Y., Wang, Y., Wang, J., & Yin, J. (2012). Mechanical reinforcement of chitosan using unzipped multiwalled carbon nanotube oxides. Polymer, 53(2), 657-664. https://doi.org/10.1016/j.polymer.2011.11.060

  • Gu, S. Y., Wang, Z. M., Ren, J., & Zhang, C. Y. (2009). Electrospinning of gelatin and gelatin/poly (l-lactide) blend and its characteristics for wound dressing. Materials Science and Engineering: C, 29(6), 1822-1828. https://doi.org/10.1016/j.msec.2009.02.010

  • Gulaczyk, I., Kręglewski, M., & Valentin, A. (2003). The N–N stretching band of hydrazine. Journal of Molecular Spectroscopy, 220(1), 132-136. https://doi.org/10.1016/S0022-2852(03)00106-1

  • Gundloori, R. V., Singam, A., & Killi, N. (2019). Nanobased intravenous and transdermal drug delivery systems. In S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra & S. Thomas (Eds.), Applications of Targeted Nano Drugs and Delivery Systems (pp. 551-594). Elsevier. https://doi.org/10.1016/B978-0-12-814029-1.00019-3

  • Haider, S., & Park, S. Y. (2009). Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu (II) and Pb (II) ions from an aqueous solution. Journal of Membrane Science, 328(1-2), 90-96. https://doi.org/10.1016/j.memsci.2008.11.046

  • Hamdi, M., Feki, A., Bardaa, S., Li, S., Nagarajan, S., Mellouli, M., & Nasri, R. (2020). A novel blue crab chitosan/protein composite hydrogel enriched with carotenoids endowed with distinguished wound healing capability: In vitro characterization and in vivo assessment. Materials Science and Engineering: C, 113, Article 110978. https://doi.org/10.1016/j.msec.2020.110978

  • Hammad, A. B. A., Elnahrawy, A. M., & Youssef, A. M. (2019). Sol gel synthesis of hybrid chitosan/calcium aluminosilicate nanocomposite membranes and its application as support for CO2 sensor. International Journal of Biological Macromolecules, 125, 503-509. https://doi.org/10.1016/j.ijbiomac.2018.12.077

  • Huang, D., Mu, B., & Wang, A. (2012). Preparation and properties of chitosan/poly (vinyl alcohol) nanocomposite films reinforced with rod-like sepiolite. Materials Letters, 86, 69-72. https://doi.org/10.1016/j.matlet.2012.07.020

  • Huang, D., Wang, W., Kang, Y., & Wang, A. (2012). A chitosan/poly (vinyl alcohol) nanocomposite film reinforced with natural halloysite nanotubes. Polymer Composites, 33(10), 1693-1699. https://doi.org/10.1002/pc.22302

  • Huang, J., Cheng, Y., Wu, Y., Shi, X., Du, Y., & Deng, H. (2019). Chitosan/tannic acid bilayers layer-by-layer deposited cellulose nanofibrous mats for antibacterial application. International Journal of Biological Macromolecules, 139, 191-198. https://doi.org/10.1016/j.ijbiomac.2019.07.185

  • Huang, W., Xu, H., Xue, Y., Huang, R., Deng, H., & Pan, S. (2012). Layer-by-layer immobilization of lysozyme–chitosan–organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Research International, 48(2), 784-791. https://doi.org/10.1016/j.foodres.2012.06.026

  • Ifuku, S., Nogi, M., Abe, K., Yoshioka, M., Morimoto, M., Saimoto, H., & Yano, H. (2009). Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells. Biomacromolecules, 10(6), 1584-1588. https://doi.org/10.1021/bm900163d

  • Islam, A., Riaz, M., & Yasin, T. (2013). Structural and viscoelastic properties of chitosan-based hydrogel and its drug delivery application. International Journal of Biological Macromolecules, 59, 119-124. https://doi.org/10.1016/j.ijbiomac.2013.04.044

  • Islam, S., Bhuiyan, M. A., & Islam, M. N. (2017). Chitin and chitosan: structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment, 25(3), 854-866. https://doi.org/10.1007/s10924-016-0865-5

  • Kavitha, K., Sutha, S., Prabhu, M., Rajendran, V., & Jayakumar, T. (2013). In situ synthesized novel biocompatible titania-chitosan nanocomposites with high surface area and antibacterial activity. Carbohydrate Polymers, 93(2), 731-739. https://doi.org/10.1016/j.carbpol.2012.12.031

  • Keten, S., Xu, Z., Ihle, B., & Buehler, M. J. (2010). Nanoconfinement controls stiffness, strength and mechanical toughness of β-sheet crystals in silk. Nature Materials, 9(4), 359-367. https://doi.org/10.1038/nmat2704

  • Lai, S. M., Yang, A. J. M., Chen, W. C., & Hsiao, J. F. (2006). The properties and preparation of chitosan/silica hybrids using sol-gel process. Polymer-Plastics Technology and Engineering, 45(9), 997-1003. https://doi.org/10.1080/03602550600726269

  • Li, F., Biagioni, P., Finazzi, M., Tavazzi, S., & Piergiovanni, L. (2013). Tunable green oxygen barrier through layer-by-layer self-assembly of chitosan and cellulose nanocrystals. Carbohydrate Polymers, 92(2), 2128-2134. https://doi.org/10.1016/j.carbpol.2012.11.091

  • Li, L., Yang, H., Li, X., Yan, S., Xu, A., You, R., & Zhang, Q. (2021). Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites. Carbohydrate Polymers, 253, Article 117214. https://doi.org/10.1016/j.carbpol.2020.117214

  • Li, M., Han, M., Sun, Y., Hua, Y., Chen, G., & Zhang, L. (2019). Oligoarginine mediated collagen/chitosan gel composite for cutaneous wound healing. International Journal of Biological Macromolecules, 122, 1120-1127. https://doi.org/10.1016/j.ijbiomac.2018.09.061

  • Li, P. C., Liao, G. M., Kumar, S. R., Shih, C. M., Yang, C. C., Wang, D. M., & Lue, S. J. (2016). Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly (vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochimica Acta, 187, 616-628. https://doi.org/10.1016/j.electacta.2015.11.117

  • Liu, H., Wang, C., Li, C., Qin, Y., Wang, Z., Yang, F., & Wang, J. (2018). A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing. RSC Advances, 8(14), 7533-7549. https://doi.org/10.1039/C7RA13510F

  • Liu, M., Zheng, H., Chen, J., Li, S., Huang, J., & Zhou, C. (2016). Chitosan-chitin nanocrystal composite scaffolds for tissue engineering. Carbohydrate Polymers, 152, 832-840. https://doi.org/10.1016/j.carbpol.2016.07.042

  • Liu, Y. L., Chen, W. H., & Chang, Y. H. (2009). Preparation and properties of chitosan/carbon nanotube nanocomposites using poly (styrene sulfonic acid)-modified CNTs. Carbohydrate Polymers, 76(2), 232-238. https://doi.org/10.1016/j.carbpol.2008.10.021

  • Lu, B., Li, T., Zhao, H., Li, X., Gao, C., Zhang, S., & Xie, E. (2012). Graphene-based composite materials beneficial to wound healing. Nanoscale, 4(9), 2978-2982. https://doi.org/10.1039/C2NR11958G

  • Lu, Z., Gao, J., He, Q., Wu, J., Liang, D., Yang, H., & Chen, R. (2017). Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydrate Polymers, 156, 460-469. https://doi.org/10.1016/j.carbpol.2016.09.051

  • Meng, D., Erol, M., & Boccaccini, A. R. (2010). Processing technologies for 3D nanostructured tissue engineering scaffolds. Advanced Engineering Materials, 12(9), B467-B487. https://doi.org/10.1002/adem.201080019

  • Packirisamy, R. G., Govindasamy, C., Sanmugam, A., Venkatesan, S., Kim, H. S., & Vikraman, D. (2019). Synthesis of novel Sn1-xZnxO-chitosan nanocomposites: Structural, morphological and luminescence properties and investigation of antibacterial properties. International Journal of Biological Macromolecules, 138, 546-555. https://doi.org/10.1016/j.ijbiomac.2019.07.120

  • Patel, S., Srivastava, S., Singh, M. R., & Singh, D. (2018). Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. International Journal of Biological Macromolecules, 107, 1888-1897.

  • Penchev, H., Paneva, D., Manolova, N., & Rashkov, I. (2010). Hybrid nanofibrous yarns based on N-carboxyethylchitosan and silver nanoparticles with antibacterial activity prepared by self-bundling electrospinning. Carbohydrate Research, 345(16), 2374-2380. https://doi.org/10.1016/j.carres.2010.08.014

  • Pinto, T. D. S., Alves, L. A., de Azevedo Cardozo, G., Munhoz, V. H., Verly, R. M., Pereira, F. V., & de Mesquita, J. P. (2017). Layer-by-layer self-assembly for carbon dots/chitosan-based multilayer: Morphology, thickness and molecular interactions. Materials Chemistry and Physics, 186, 81-89. https://doi.org/10.1016/j.matchemphys.2016.10.032

  • Podsiadlo, P., Kaushik, A. K., Arruda, E. M., Waas, A. M., Shim, B. S., Xu, J., Nandivada, H., Pumplin, B. G., Lahann, J., Ramamoorthy, A., & Kotov, N. A. (2007). Ultrastrong and stiff layered polymer nanocomposites. Science, 318(5847), 80-83. https://doi.org/10.1126/science.1143176

  • Poonguzhali, R., Basha, S. K., & Kumari, V. S. (2017). Synthesis and characterization of chitosan-PVP-nanocellulose composites for in-vitro wound dressing application. International Journal of Biological Macromolecules, 105, 111-120. https://doi.org/10.1016/j.ijbiomac.2017.07.006

  • Qasim, S. B., Zafar, M. S., Najeeb, S., Khurshid, Z., Shah, A. H., Husain, S., & Rehman, I. U. (2018). Electrospinning of chitosan-based solutions for tissue engineering and regenerative medicine. International Journal of Molecular Sciences, 19(2), Article 407. https://doi.org/10.3390/ijms19020407

  • Rahmani, H., Najafi, S. H. M., Ashori, A., Fashapoyeh, M. A., Mohseni, F. A., & Torkaman, S. (2020). Preparation of chitosan-based composites with urethane cross linkage and evaluation of their properties for using as wound healing dressing. Carbohydrate Polymers, 230, Article 115606. https://doi.org/10.1016/j.carbpol.2019.115606

  • Raoufi, D. (2013). Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renewable Energy, 50, 932-937. https://doi.org/10.1016/j.renene.2012.08.076

  • Rezvani, H., Riazi, M., Tabaei, M., Kazemzadeh, Y., & Sharifi, M. (2018). Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@ Chitosan nanocomposites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 544, 15-27. https://doi.org/10.1016/j.colsurfa.2018.02.012

  • Salaberria, A. M., Diaz, R. H., Labidi, J., & Fernandes, S. C. (2015). Preparing valuable renewable nanocomposite films based exclusively on oceanic biomass - Chitin nanofillers and chitosan. Reactive and Functional Polymers, 89, 31-39. https://doi.org/10.1016/j.reactfunctpolym.2015.03.003

  • Salehizadeh, H., Hekmatian, E., Sadeghi, M., & Kennedy, K. (2012). Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure. Journal of Nanobiotechnology, 10(1), 1-7. https://doi.org/10.1186/1477-3155-10-3

  • Santos, K. O., Barbosa, R. C., da Silva Buriti, J., Bezerra Junior, A. G., de Sousa, W. J. B., de Barros, S. M. C., de Oliveira, R. J., & Fook, M. V. L. (2019). Thermal, chemical, biological and mechanical properties of chitosan films with powder of eggshell membrane for biomedical applications. Journal of Thermal Analysis and Calorimetry, 136(2), 725-735. https://doi.org/10.1007/s10973-018-7666-0

  • Saravanan, R., Aviles, J., Gracia, F., Mosquera, E., & Gupta, V. K. (2018). Crystallinity and lowering band gap induced visible light photocatalytic activity of TiO2/CS (Chitosan) nanocomposites. International Journal of Biological Macromolecules, 109, 1239-1245. https://doi.org/10.1016/j.ijbiomac.2017.11.125

  • Schiffman, J. D., & Schauer, C. L. (2008). A review: Electrospinning of biopolymer nanofibers and their applications. Polymer Reviews, 48(2), 317-352. https://doi.org/10.1080/15583720802022182

  • Sharma, G., Naushad, M., Kumar, A., Kumar, A., Ahamad, T., & Stadler, F. J. (2020). Facile fabrication of chitosan-cl-poly (AA)/ZrPO4 nanocomposite for remediation of rhodamine B and antimicrobial activity. Journal of King Saud University-Science, 32(2), 1359-1365. https://doi.org/10.1016/j.jksus.2019.11.028

  • Singh, A., Sinsinbar, G., Choudhary, M., Kumar, V., Pasricha, R., Verma, H. N., Singh, S. P., & Arora, K. (2013). Graphene oxide-chitosan nanocomposite based electrochemical DNA biosensor for detection of typhoid. Sensors and Actuators B: Chemical, 185, 675-684. https://doi.org/10.1016/j.snb.2013.05.014

  • Singh, S., Singh, G., Prakash, C., Ramakrishna, S., Lamberti, L., & Pruncu, C. I. (2020). 3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold. Polymer Testing, 89, Article 106722. https://doi.org/10.1016/j.polymertesting.2020.106722

  • Siqueira, J. R., Gasparotto, L. H., Crespilho, F. N., Carvalho, A. J., Zucolotto, V., & Oliveira, O. N. (2006). Physicochemical properties and sensing ability of metallophthalocyanines/chitosan nanocomposites. The Journal of Physical Chemistry B, 110(45), 22690-22694. https://doi.org/10.1021/jp0649089

  • Sreedhar, B., Aparna, Y., Sairam, M., & Hebalkar, N. (2007). Preparation and characterization of HAP/carboxymethyl chitosan nanocomposites. Journal of Applied Polymer Science, 105(2), 928-934. https://doi.org/10.1002/app.26140

  • Khan, T. A., Peh, K. K., & Ch’ng, H. S. (2000). Mechanical, bioadhesive strength and biological evaluations of chitosan films for wound dressing. Journal of Pharmaceutical Sciences, 3(3), 303-311.

  • Thou, C. Z., Khan, F. S. A., Mubarak, N. M., Ahmad, A., Khalid, M., Jagadish, P., Walvekar, R., Abdullah, E. C., Khan, S., Khan, M., Hussain, S., Ahmad, I., & Algarni, T. S. (2021). Surface charge on chitosan/cellulose nanowhiskers composite via functionalized and untreated carbon nanotube. Arabian Journal of Chemistry, 14(3), 103022. https://doi.org/10.1016/j.arabjc.2021.103022

  • Tripathi, S., Mehrotra, G. K., & Dutta, P. K. (2011). Chitosan–silver oxide nanocomposite film: Preparation and antimicrobial activity. Bulletin of Materials Science, 34(1), 29-35. https://doi.org/10.1007/s12034-011-0032-5

  • Türkeş, E., & Açıkel, Y. S. (2020). Synthesis and characterization of magnetic halloysite-chitosan nanocomposites: Use in the removal of methylene blue in wastewaters. International Journal of Environmental Science and Technology, 17(3), 1281-1294. https://doi.org/10.1007/s13762-019-02550-w

  • Varma, H. K., Yokogawa, Y., Espinosa, F. F., Kawamoto, Y., Nishizawa, K., Nagata, F., & Kameyama, T. (1999). Porous calcium phosphate coating over phosphorylated chitosan film by a biomimetic method. Biomaterials, 20(9), 879-884. https://doi.org/10.1016/S0142-9612(98)00243-9

  • Vollrath, F., & Knight, D. P. (2001). Liquid crystalline spinning of spider silk. Nature, 410(6828), 541-548. https://doi.org/10.1038/35069000

  • Wang, D., Lu, Q., Wei, M., & Guo, E. (2018). Ultrasmall Ag nanocrystals supported on chitosan/PVA nanofiber mats with bifunctional properties. Journal of Applied Polymer Science, 135(28), 46504. https://doi.org/10.1002/app.46504

  • Wang, H. M., Chou, Y. T., Wen, Z. H., Wang, Z. R., Chen, C. H., & Ho, M. L. (2013). Novel biodegradable porous scaffold applied to skin regeneration. PloS One, 8(6), Article e56330. https://doi.org/10.1371/journal.pone.0056330

  • Wang, J., Law, W. C., Chen, L., Chen, D., & Tang, C. Y. (2017). Fabrication of monodisperse drug-loaded poly (lactic-co-glycolic acid)–chitosan core-shell nanocomposites via pickering emulsion. Composites Part B: Engineering, 121, 99-107. https://doi.org/10.1016/j.compositesb.2017.03.032

  • Wang, S. F., Shen, L., Tong, Y. J., Chen, L., Phang, I. Y., Lim, P. Q., & Liu, T. X. (2005). Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polymer Degradation and Stability, 90(1), 123-131. https://doi.org/10.1016/j.polymdegradstab.2005.03.001

  • Wang, X., Cheng, F., Gao, J., & Wang, L. (2015). Antibacterial wound dressing from chitosan/polyethylene oxide nanofibers mats embedded with silver nanoparticles. Journal of biomaterials applications, 29(8), 1086-1095. https://doi.org/10.1177/0885328214554665

  • Wu, T., Pan, Y., Bao, H., & Li, L. (2011). Preparation and properties of chitosan nanocomposite films reinforced by poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) treated carbon nanotubes. Materials Chemistry and Physics, 129(3), 932-938. https://doi.org/10.1016/j.matchemphys.2011.05.030

  • Xie, H., Chen, X., Shen, X., He, Y., Chen, W., Luo, Q., Ge, W., Yuan, W., Tang, X., Hou, D., Jiang, D., Wang, Q., Liu, Y., Liu, Q., & Li, K. (2018). Preparation of chitosan-collagen-alginate composite dressing and its promoting effects on wound healing. International Journal of Biological Macromolecules, 107, 93-104. https://doi.org/10.1016/j.ijbiomac.2017.08.142

  • Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakuda, K., Monma, H., & Tanaka, J. (2001). Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. Journal of Biomedical Materials Research, 55(1), 20-27. https://doi.org/10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-F

  • Yang, D., Li, J., Jiang, Z., Lu, L., & Chen, X. (2009). Chitosan/TiO2 nanocomposite pervaporation membranes for ethanol dehydration. Chemical Engineering Science, 64(13), 3130-3137. https://doi.org/10.1016/j.ces.2009.03.042

  • Yilmaz, E., & Soylak, M. (2020). Functionalized nanomaterials for sample preparation methods. In C. M. Hussain (Ed.), Handbook of Nanomaterials in Analytical Chemistry (pp. 375-413). Elsevier. https://doi.org/10.1016/B978-0-12-816699-4.00015-3

  • Yin, K., Divakar, P., & Wegst, U. G. (2019). Plant-derived nanocellulose as structural and mechanical reinforcement of freeze-cast chitosan scaffolds for biomedical applications. Biomacromolecules, 20(10), 3733-3745. https://doi.org/10.1021/acs.biomac.9b00784

  • Youssef, A. M., El-Nahrawy, A. M., & Hammad, A. B. A. (2017). Sol-gel synthesis and characterizations of hybrid chitosan-PEG/calcium silicate nanocomposite modified with ZnO-NPs and (E102) for optical and antibacterial applications. International Journal of Biological Macromolecules, 97, 561-567. https://doi.org/10.1016/j.ijbiomac.2017.01.059

  • Zafar, M., Najeeb, S., Khurshid, Z., Vazirzadeh, M., Zohaib, S., Najeeb, B., & Sefat, F. (2016). Potential of electrospun nanofibers for biomedical and dental applications. Materials, 9(2), Article 73. https://doi.org/10.3390/ma9020073

  • Zhang, F., You, X., Dou, H., Liu, Z., Zuo, B., & Zhang, X. (2015). Facile fabrication of robust silk nanofibril films via direct dissolution of silk in CaCl2-formic acid solution. ACS Applied Materials & Interfaces, 7(5), 3352-3361. https://doi.org/10.1021/am508319h

  • Zhang, W., Jia, S., Wu, Q., Wu, S., Ran, J., Liu, Y., & Hou, J. (2012). Studies of the magnetic field intensity on the synthesis of chitosan-coated magnetite nanocomposites by co-precipitation method. Materials Science and Engineering: C, 32(2), 381-384. https://doi.org/10.1016/j.msec.2011.11.010

  • Zhong, S. P., Zhang, Y. Z., & Lim, C. T. (2010). Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2(5), 510-525. https://doi.org/10.1002/wnan.100

  • Zhu, Y., Dong, Z., Wejinya, U. C., Jin, S., & Ye, K. (2011). Determination of mechanical properties of soft tissue scaffolds by atomic force microscopy nanoindentation. Journal of Biomechanics, 44(13), 2356-2361. https://doi.org/10.1016/j.jbiomech.2011.07.010

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3553-2022

Download Full Article PDF

Share this article

Related Articles