Home / Regular Issue / JST Vol. 31 (6) Oct. 2023 / JST-4027-2022

 

Influence of Heat Treatment on the Mechanical Properties and Precipitation Kinetic of Sugar Palm Fiber Ash Reinforced LM26 Al Matrix Composites

Isah Aliyu, Mohd Sapuan Salit, Edi Syams Zainudin, Mohd Zuhri Mohamed Yusoff and Ridwan Yahaya

Pertanika Journal of Science & Technology, Volume 31, Issue 6, October 2023

DOI: https://doi.org/10.47836/pjst.31.6.12

Keywords: Aging time, LM26 Al alloy, mechanical properties, precipitation kinetics, sugar palm fiber

Published on: 12 October 2023

Heat treatment is a commonly known treatment subjected to aluminum alloy and their composites to improve their mechanical properties for automotive, aerospace, and marine applications. The heat treatment was carried out to determine the influence of aging time and temperature on the mechanical properties of LM26 Al alloy reinforced with 0, 2, 4, 6, 8, and 10 wt% sugar palm fiber ash (SPFA) and its precipitation kinetics. The LM26 Al/SPFA composites were fabricated through the stir casting technique, solutionized at 500oC for 2 h, and quenched in water at room temperature. The quenched composites were aged at various ageing times and temperatures and allowed to air cool. The hardness, impact energy, tensile, and compression strengths of the aged composites were appraised. In addition, the precipitation kinetics were studied to validate the precipitation temperatures of LM26 Al matrix composites. The hardness of the composites increased with aging time and temperature, with LM26 Al/10 wt% SPFA composite reaching a hardness peak of 102.10 VH at an aging temperature of 180oC after 5 h, compared to 56.70 VH for LM26 Al alloy. Similarly, after 5 h of aging at 180oC, the LM26 Al/8 wt% SPFA composite achieved maximum tensile and compression strengths of 198.21 MPa and 326.22 MPa, respectively. Precipitation temperature decreased from 584.8oC (LM26 Al alloy) to 480.46oC (LM26/ 10wt% SPFA), indicating that adding SPFA improved precipitation kinetics. The age-hardened composite with high hardness, tensile strength, and compression strength makes it a promising piston material application in the automotive industry.

  • Al-Salihi, H. A., & Judran, H. K. (2020). Effect of Al2O3 reinforcement nanoparticles on the tribological behaviour and mechanical properties of Al6061 alloy. Materials Science, 7(4), 486-498. https://doi.org/10.3934/matersci.2020.4.486

  • Arunachalam, R., Piya, S., Krishnan, P. K., Muraliraja, R., Christy, J. V., Mourad, A. I., & Al-Maharbi, M. (2019). Optimization of stir – squeeze casting parameters for production of metal matrix composites using a hybrid analytical hierarchy process - Taguchi-Grey approach. Engineering Optimization, 52(7), 1166-1183. https://doi.org/10.1080/0305215X.2019.1639693

  • ASTM International. (2017). Standard Test Method for Microindentation Hardness of Materials (ASTM Standard Version E384-05A). https://doi.org/10.1520/E0384-05A

  • ASTM International. (2015a). Standard Test Methods for Tension Testing of Metallic Materials (ASTM Standard Version E8/E8M- 13A). https://doi.org/10.1520/E0008_E0008M-13A

  • ASTM International (2015b). Standard Practice for Microetching Metals and Alloys (ASTM Standard Version E384-05). https://webstore.ansi.org/standards/astm/astme38405

  • ASTM International. (2023). Standard Test Methods for Notched Bar Impact Testing of Metallic materials (ASTM Standard Version E23-18). https://doi.org/10.1520/E0023-18

  • Babu, P. M., Rajamuneeswaran, S., Pritima, D., Marichamy, S., & Vairamuthu, J. (2020). Spark erosion machining behaviour of coconut shell ash reinforced silicon metal matrix. Materials Today: Proceedings, 33, 4602-4604. https://doi.org/10.1016/j.matpr.2020.08.195

  • Bawa, M. A., Umaru, O. B., Abur, B. T., Salako, I., & Jatau, J. S. (2020). Effect of locust bean pod ash on the hardness and wear rate of heat treated A356 alloy metal matrix composite for production of automobile brake rotor. International Journal of Research Publication (IJRP.ORG), 57(1), 36-43. https://doi.org/10.47119/IJRP100571720201325

  • Bushlya, V., Lenrick, F., Gutnichenko, O., Petrusha, I., Osipov, O., Kristiansson, S., & Stahl, J.-E. (2017). Performance and wear mechanisms of novel superhard diamond and boron nitride based tools in machining Al-SiCp metal matrix composite. Wear, 376-377, 152-164. https://doi.org/10.1016/j.wear.2017.01.036

  • Chak, V., Chattopadhyay, H., & Kumar, A. (2020). Synthesis , characterization and deformation of Al - 4.5Cu /SiCp composites. Materials Today: Proceedings, 26, 2833-2838. https://doi.org/10.1016/j.matpr.2020.02.590

  • Chauhan, A., Vates, U. K., Kanu, J. N., Gupta, E., Singh, G. K., Sharma, B. P., & Gorrepati, S. R. (2021). Fabrication and characterization of novel nitinol particulate reinforced aluminium alloy metal matrix composites (NiTip/AA6061 MMCs). Materials Today: Proceedings, 38, 3027-3034. https://doi.org/10.1016/j.matpr.2020.09.326

  • Das, D., Roy, D. K., Satpathy, M. P., Nanda, B. K., & Nayak, R. K. (2019). Compressive, impact and flexural behaviour of Al based metal matrix composites. Materials Today: Proceedings, 18(7), 3080-3086. https://doi.org/10.1016/j.matpr.2019.07.180

  • Edhirej, A., Sapuan, S. M., Jawaid, M., & Zahari, N. I. (2017). Cassava / sugar palm fiber reinforced cassava starch hybrid composites : Physical , thermal and structural properties. International Journal of Biological Macromolecules, 101, 75-83. https://doi.org/10.1016/j.ijbiomac.2017.03.045

  • Fang, X., Song, M., Li, K., & Du, Y. (2010). Precipitation sequence of an aged Al-Mg-Si alloy. Journal of Mining and Metallurgy, Section B: Metallurgy, 46(2), 171-180. https://doi.org/10.2298/JMMB1002171F

  • Flanagan, S., Main, J., Lynch, P., Vanderwiel, C., & Roth, J. T. (2019). A mechanical evaluation of an overaged overaged aluminum metal-matrix-composite (2009 Al/SiC/15p MMC). Procedia Manufacturing, 34, 58-64. https://doi.org/10.1016/j.promfg.2019.06.117

  • Fröck, H., Reich, M., & Milkereit, B. (2019). Scanning rate extension of conventional DSCs through indirect measurements. Materials, 12(7), Article 1085. https://doi.org/10.3390/ma12071085

  • Geetha, B., & Ganesan, K. (2015). The effects of ageing temperature and time on mechanical properties of A356 aluminium cast alloy with red mud addition and treated by T6 heat treatment. Materials Today: Proceedings, 2(4–5), 1200-1209. https://doi.org/10.1016/j.matpr.2015.07.032

  • Goudar, D. M., Srivastava, V. C., & Rudrakshi, G. B. (2018). Microstructure and mechanical properties of spray formed and hot pressed / heat treated Al- ( 20-30 wt %) Mg2Si-2 % Cu Alloy. Research & Reviews: Journal of Material Sciences, 6(1), 10-22. https://doi.org/10.4172/2321-6212.1000211

  • Harussani, M. M., & Sapuan, S. M. (2022). Tensile and flexural properties of compression molded composites of epoxy reinforced with treated sugar palm fibre. Journal of Natural Fibre Polymer Composites (JNFPC), 1(2), 1-13.

  • Hashim, J., Looney, L., & Hashmi, M. S. J. (1999). Metal matrix composites: production by the stir casting method. Journal of materials processing technology, 92, 1-7. https://doi.org/10.1016/S0924-0136(99)00118-1

  • He, H., Zhang, L., Li, S., Wu, X., Zhang, H., & Li, L. (2018). Precipitation stages and reaction kinetics of AlMgSi alloys during the artificial aging process monitored. Metals, 8(1), Article 39. https://doi.org/10.3390/met8010039

  • Hiremath, A., & Hemanth, J. (2018). An exploratory study to evaluate the thermal conductivity of LM25-borosilicate glass (P) composites under the influence of different end chills. Pertanika Journal of Science & Technology, 26(4), 1837-1848.

  • Ikubanni, P., Oki, M., Adeleke, A., Omoniyi, P., Ajisegiri, E., & Akinlabi, E. (2022). Physico-mechanical properties and microstructure response of hybrid reinforced Al6063 composites to PKSA/SiC Inclusion. ACTA Metallurgica Slovaca, 28(1), 25-32. https://doi.org/10.36547/ams.28.1.1340

  • Ikumapayi, O. M., Afolalu, S. A., Bodunde, O. P., Ugwuoke, C. P., Benjamin, H. A., & Akinlabi, E. T. (2022). Efficacy of heat treatment on the material properties of aluminium alloy matrix composite impregnated with silver nano particle/calcium carbonate Al. International Journal of Advanced Technology and Engieering Exploration, 9(89), 523-535. https://doi.org/10.19101/IJATEE.2021.874829

  • Ilyas, R. A., Sapuan, S. M., & Ishak, M. R. (2018). Isolation and characterization of nanocrystalline cellulose from sugar palm fibres (Arenga Pinnata). Carbohydrate Polymers, 181, 1038-1051. https://doi.org/10.1016/j.carbpol.2017.11.045

  • Ishak, M. R., Leman, Z., Sapuan, S. M., Rahman, M. Z. A., & Anwar, U. M. K. (2013). Impregnation modification of sugar palm fibres with phenol formaldehyde and unsaturated polyester. Fibers and Polymers, 14(2), 250-257. https://doi.org/10.1007/s12221-013-0250-0

  • Ishak, M. R., Sapuan, S. M., Leman, Z., Rahman, M. Z. A., Anwar, U. M. K., & Siregar, J. P. (2013). Sugar palm (Arenga pinnata): Its fibres, polymers and composites. Carbohydrate Polymers, 91(2), 699-710. https://doi.org/10.1016/j.carbpol.2012.07.073

  • Iyasele, E. O. (2018). Comparative analysis on the mechanical properties of a Metal-Matrix Composite (MMC) reinforced with palm kernel/periwinkle shell ash. Global Scienctific Journals, 6(8), 1-24.

  • Kawin, N., Jagadeesh, D., Saravanan, G., & Periasamy, K. (2020). Optimization of turning parameters in sugarcane bagasse ash reinforced with Al-Si10-Mg alloy composites by Taguchi method. Materials Today: Proceedings, 21, 474-476. https://doi.org/10.1016/j.matpr.2019.06.634

  • Kennedy, Z. E., & Raja, A. I. (2022). Evaluation of mechanical properties of Al-B4C and Al-SiC metal matrix composites - A comparison. Materials Today: Proceedings, 55, 380-383. https://doi.org/10.1016/j.matpr.2021.08.356

  • Khan, A. H., Shah, S. A. A., Umar, F., Noor, U., Gul, R. M., Giasin, K., & Aamir, M. (2022). Investigating the microstructural and mechanical properties of novel ternary reinforced AA7075 hybrid metal matrix composite. Materials, 15(15), Article 5303. https://doi.org/10.3390/ma15155303

  • Kondoh, K., Kawakami, M., Imai, H., Umeda, J., & Fujii, H. (2010). Wettability of pure Ti by molten pure Mg droplets. Acta Materialia, 58(2), 606-614. https://doi.org/10.1016/j.actamat.2009.09.039

  • Kumar, K. R., Pridhar, T., & Balaji, V. S. S. (2018). Mechanical properties and characterization of zirconium oxide (ZrO2) and coconut shell ash (CSA) reinforced aluminium (Al6082) matrix hybrid composite. Journal of Alloys and Compounds, 765, 171-179. https://doi.org/10.1016/j.jallcom.2018.06.177

  • Lakshmikanthan, A., Prabhu, T. R., Babu, U. S., Koppad, P. G., Gupta, M., Krishna, M., & Bontha, S. (2020). The effect of heat treatment on the mechanical and tribological properties of dual size SiC reinforced A357 matrix composites. Journal of Materials Research and Technology, 9(3), 6434-6452. https://doi.org/10.1016/j.jmrt.2020.04.027

  • Li, N., Yan, H., & Wang, Z. W. (2018). Effects of heat treatment on the tribological properties of Sicp/Al-5Si-1Cu-0.5Mg composite processed by electromagnetic stirring method. Applied Sciences, 8(3), Article 372. https://doi.org/10.3390/app8030372

  • Lokesh, G. N., Prashanth, K. P., Prasad, G. P., & Venkatesha, B. K. (2022). Mechanical and microstructure evaluation of stir cast Al-4.5%Cu alloy reinforced fly ash/boron carbide hybrid metal matrix composites. Materials Today: Proceedings, 54, 486-491. https://doi.org/10.1016/j.matpr.2021.11.131

  • Mabuwa, S., Msomi, V., Ndube-Tsolekile, N., & Zungu, V. M. (2022). Status and progress on fabricating automotive-based aluminium metal matrix composites using FSP technique. Materials Today: Proceedings, 56, 1648-1652. https://doi.org/10.1016/j.matpr.2021.10.179

  • Manda, C. S., Babu, B. S., & Ramaniah, N. (2021). Effect of heat treatment on mechanical properties of aluminium metal matrix composite (AA6061/MoS2). Advances in Materials and Processing Technologies, 8, 205-222. https://doi.org/10.1080/2374068X.2020.1860593

  • Manikandan, R., & Arjunan, T. V. (2019). Microstructure and mechanical characteristics of CDA-B4C hybrid metal matrix composites. Metals and Materials International, 27, 885-899. https://doi.org/10.1007/s12540-019-00518-6

  • Mistry, J. M., & Gohil, P. P. (2019). Experimental investigations on wear and friction behaviour of Si3N4p reinforced heat-treated aluminium matrix composites produced using electromagnetic stir casting process. Composites Part B: Engineering, 161, 190-204. https://doi.org/10.1016/j.compositesb.2018.10.074

  • Morampudi, P., Ramana, V. S. N. V., Bhavani, K., Reddy, C. K., & Vikas, K. S. R. (2022). Wear and corrosion behavior of AA6061 metal matrix composites with ilmenite as reinforcement. Materials Today: Proceedings, 52, 1515-1520. https://doi.org/10.1016/j.matpr.2021.11.228

  • Nagaraja, S., Kodandappa, R., Ansari, K., Kuruniyan, M. S., Afzal, A., Kaladgi, A. A., Aslfattahi, N., Saleel, C. A., Gowda, A. C., & Anand, P. B. (2021). Influence of heat treatment and reinforcements on tensile. Materials, 14(18), Article 5261. https://doi.org/10.3390/ma14185261

  • Nambiar, S., Adhikari, R., Upadhya, N., & Hande, R. (2020). Study on progressive wear of machine reamer while reaming Al6061/SiC Composite. Pertanika Journal of Science & Technology, 28(1), 403-420.

  • Natrayan, L., Singh, M., & Kumar, M. S. (2017). An experimental investigation on mechanical behaviour of SiCp reinforced Al 6061 MMC using squeeze casting process. International Journal of Mechanical and Production Engineering Research and Development, 7(6), 663-668. https://doi.org/10.24247/ijmperddec201774

  • Olaniran, O., Uwaifo, O., Bamidele, E., & Olaniran, B. (2019). An investigation of the mechanical properties of organic silica, bamboo leaf ash and rice husk reinforced aluminium hybrid composite. Material Science & Engineering International Journal, 3(4), 129-134. https://doi.org/10.15406/mseij.2019.03.00103

  • Olusesi, O. S., & Udoye, N. E. (2021). Development and characterization of AA6061 aluminium alloy/clay and rice husk ash composite. Manufacturing Letters, 29, 34-41. https://doi.org/10.1016/j.mfglet.2021.05.006

  • Pasha, S. K., Sharma, A., & Tambe, P. (2022). Mechanical properties and tribological behavior of Al7075 metal matrix composites : A review. Materials Today: Proceedings, 56, 1513-1521. https://doi.org/10.1016/j.matpr.2022.01.102

  • Patel, M., Sahu, S. K., Singh, M. K., & Dalai, N. (2022). Micro-structural and mechanical characterization of stir cast AA5052/B4C metal matrix composite. Materials Today Proceedings, 56, 1129-1136. https://doi.org/10.1016/j.matpr.2021.10.331

  • Pasupulla, A. P., Amornphimoltham, P., Charles, P., Sundaram, V. S., & Ramakrishna, M. M. (2022). Taguchi L16 orthogonal array analysis on wear rate parameters for aluminum related hybrid composites. Materials Today: Proceedings, 62, 1692-1696. https://doi.org/10.1016/j.matpr.2021.11.435

  • Rajaram, S., Subbiah, T., Mahali, P. K., & Thangara, M. (2022). Effect of age-hardening temperature on mechanical and wear behavior of furnace-cooled al7075-Tungsten Carbide compositer. Materials, 15(15), Article 5344. https://doi.org/10.3390/ma15155344

  • Rajasekaran, S., Udayashankar, N. K., & Nayak, J. (2012). T4 and T6 Treatment of 6061 Al-15 Vol.% SiCP Composite. ISRN Materials Science, 2012, Article 374719. https://doi.org/10.5402/2012/374719

  • Ramasamy, M., Daniel, A. A., & Nithya, M. (2021). Investigation on surface roughness of aluminium (Al7050/TiC/BN) hybrid metal matrix. Materials Today: Proceedings, 46, 852-856. https://doi.org/10.1016/j.matpr.2020.12.852

  • Sabry, I., Ghafaar, M. A., Hamid, A., Mourad, I., & Idrisi, A. H. (2020). Stir casted SiC Gr/Al6061 hybrid composite tribological and mechanical properties. SN Applied Sciences, 2, Article 943. https://doi.org/10.1007/s42452-020-2713-4

  • Sajjadi, S. A., Ezatpour, H. R., & Beygi, H. (2011). Microstructure and mechanical properties of Al-Al2O3 micro and nano composites fabricated by stir casting. Materials Science and Engineering A, 528(29-30), 8765-8771. https://doi.org/10.1016/j.msea.2011.08.052

  • Sam, M., Radhika, N., & Sai, K. P. (2020). Effect of heat treatment on mechanical and tribological properties of aluminum metal matrix composites. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(22), 4493-4504. https://doi.org/10.1177/0954406220922253

  • Samal, P., Vundavilli, P. R., Meher, A., & Mahapatra, M. M. (2020). Recent progress in aluminum metal matrix composites: A review on processing, mechanical and wear properties. Journal of Manufacturing Processes, 59, 131-152. https://doi.org/10.1016/j.jmapro.2020.09.010

  • Seetharaman, S., Subramanian, J., Singh, R. A., Wong, W. L. E., Nai, M. L. S., & Gupta, M. (2022). Mechanical properties of sustainable metal matrix composites : A review on the role of green reinforcements and processing methods. Technologies, 10, Article 32.

  • Shaikh, M. B. N., Arif, S., Aziz, T., Waseem, A., Shaikh, M. A. N., & Ali, M. (2019). Microstructural, mechanical and tribological behaviour of powder metallurgy processed SiC and RHA reinforced Al-based composites. Surfaces and Interfaces, 15, 166-179. https://doi.org/10.1016/j.surfin.2019.03.002

  • Sharma, S., Nanda, T., & Pandey, O. P. (2019). Investigation of T4 and T6 heat treatment on the wear properties of sillimanite reinforced LM30 aluminium alloy composites. Wear, 426-427, 27-36. https://doi.org/10.1016/j.wear.2018.12.065

  • Singh, B., Grewal, J. S., & Sharma, S. (2022). Effect of addition of flyash and graphite on the mechanical properties of A6061-T6. Materials Today: Proceedings, 50, 2411-2415. https://doi.org/10.1016/j.matpr.2021.10.258

  • Singh, G., & Sharma, N. (2021). Study on the influence of T4 and T6 heat treatment on the wear behavior of coarse and fine WC particulate reinforced LM28 Aluminium cast composites. Composites Part C: Open Access, 4, Article 100106. https://doi.org/10.1016/j.jcomc.2021.100106

  • Singh, K., Singh, H., Vardhan, S., & Mohan, S. (2022). An overview on the synthesis of aluminium matrix composites using stir casting technique. Materials Today: Proceedings, 60, 868-872. https://doi.org/10.1016/j.matpr.2021.09.509

  • Singh, P., Gupta, R., Izan, S., Singh, S., Sharma, R., & Dwivedi, S. P. (2021). Tribo-mechanical behaviour of aluminium-based metal matrix composite: A review. Materials Today: Proceedings, 47, 3828-3832. https://doi.org/10.1016/j.matpr.2021.03.092

  • Singh, V. K., Chauhan, S., Gope, P. C., & Chaudhary, A. K. (2015). Enhancement of wettability of aluminum based silicon carbide reinforced particulate metal matrix composite. High Temperature Materials and Processes, 34(2), 163-170. https://doi.org/10.1515/htmp-2014-0043

  • Somashekhar, P. H., Sharma, K. V, & Girisha, H. N. (2018). Effect of heat treatment on tensile and hardness properties of Aluminium-7075 alloy reinforced with graphite and bagasse-ash composites. IOSR Journal of Engineering, 8(8), 38-43.

  • Reddy, K. S. K., Kannan, M., Karthikeyan, R., Prashanth, S., & Reddy, B. R. (2020). A review on mechanical and thermal properties of aluminum metal matrix composites. E3S Web of Conferences, 184, Article 01033. https://doi.org/10.1051/e3sconf/202018401033

  • Tiwari, K. S., Soni, S., Rana, R. S., & Singh, A. (2017). Effect of aging on mechanical behaviour of ADC12-fly ash particulate composite. Material Today: Proceedings, 4(2), 3513-3524. https://doi.org/10.1016/j.matpr.2017.02.242

  • Varalakshmi, K., Kumar, K. C. K., Babu, P. R., & Sastry, M. R. C. (2019). Characterization of Al 6061-coconut Shell ash metal matrix composites using stir casting. International Journal of Latest Engineering Science (IJLES), 2(3), 41-49. http://ijlesjournal.org/2019/volume-2%20issue-3/ijles-v2i3p106.pdf

  • Velavan, K., Palanikumar, K., Natarajan, E., & Hong, W. (2020). Implications on the influence of mica on the mechanical properties of cast hybrid (Al +10%B4C+Mica) metal matrix composite. Journal of Materials Research and Technology, 10, 99-109. https://doi.org/10.1016/j.jmrt.2020.12.004

  • Vencl, A., Bobic, I., Arostegui, S., Bobic, B., Marinković, A., & Babić, M. (2010). Structural, mechanical and tribological properties of A356 aluminium alloy reinforced with Al2O3, SiC and SiC+ graphite particles. Journal of Alloys and Compounds, 506(2), 631-639. https://doi.org/10.1016/j.jallcom.2010.07.028

  • Venkatesh, L., Arjunan, T. V., & Ravikumar, K. (2019). Microstructural characteristics and mechanical behaviour of aluminium hybrid composites reinforced with groundnut shell ash and B4C. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, Article 295. https://doi.org/10.1007/s40430-019-1800-1

  • Xia, X., Zhao, Q., Peng, Y., Zhang, P., Liu, L., Ding, J., Luo, X., Huang, L., Zhang, H., & Chen, X. (2020). Precipitation behavior and mechanical performances of A356.2 alloy treated by Al-Sr-La composite refinement-modi fi cation agent. Journal of Alloys and Compounds, 818, Article 153370. https://doi.org/10.1016/j.jallcom.2019.153370

  • Yang, K. V, Rometsch, P., Davies, C. H. J., Huang, A., & Wu, X. (2018). Effect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy produced by selective laser melting. Materials & Design, 154, 275-290. https://doi.org/10.1016/j.matdes.2018.05.026

  • Yashpal, Sumankant, Jawalkar, C. S., Verma, A. S., & Suri, N. M. (2017). Fabrication of aluminium metal matrix composites with particulate reinforcement: A review. Materials Today: Proceedings, 4(2), 2927-2936. https://doi.org/10.1016/j.matpr.2017.02.174

  • Yuan, D., Yang, X., Wu, S., Lü, S., & Hu, K. (2019). Development of high strength and toughness nano-SiCp/A356 composites with ultrasonic vibration and squeeze casting. Journal of Materials Processing Technology, 269, 1-9. https://doi.org/10.1016/j.jmatprotec.2019.01.021

  • Yuan, Q., Fu D., Zeng, X., & Liu, Y. (2017). Fabrication of carbon nanotube reinforced AZ91D composite with superior mechanical properties. Transactions of Nonferrous Metals Society of China, 27(8), 1716-1724. https://doi.org/10.1016/S1003-6326(17)60194-8 

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4027-2022

Download Full Article PDF

Share this article

Related Articles