Home / Regular Issue / JTAS Vol. 44 (1) Feb. 2021 / JTAS-2090-2020

 

Review of Antioxidant-rich Natural Dietary Products as Protective and Therapeutic Factors against Cadmium Toxicity in Living Organisms

Abdul Quddus, Nurhusien Yimer, Muhammad Abdul Basit, Saadiya Khan and Maria Amir

Pertanika Journal of Tropical Agricultural Science, Volume 44, Issue 1, February 2021

DOI: https://doi.org/10.47836/pjtas.44.1.05

Keywords: Cadmium toxicity, dietary products, mechanisms, natural antioxidants

Published on: 24 Febuary 2021

Advances in civilization processes and industrialization have doubled the release of toxic heavy metals into the environment, consequently elevating their presence in the food chains. Cadmium (Cd) is one of the severe toxic metals widely present in the atmosphere. The major route of animal or human exposure to Cd is through water or food ingestion and inhalation of particles or inhalation of fumes during various industrial processes. Continuous exposure to low levels of Cd results in a gradual deposition in different tissues of the body, causing toxic effects on the liver, kidneys, testes, and other vital organs. The beneficial effect of natural antioxidants against chemical induced toxicity is receiving more attention. Antioxidant-rich dietary products and their function in tempering free radicals produced in the body under different pathological conditions is an active research field. In the current review, we attempted to highlight the current research progress in the field of using antioxidant-rich natural dietary products and their function in mitigating or preventing health issues and tissue damage associated with Cd induced toxicity along with its mechanism.

  • Abdel-Moneim, W., & Ghafeer, H. (2007). The potential protective effect of natural honey against cadmium-induced hepatotoxicity and nephrotoxicity. Mansoura Journal of Forensic Medicine and Clinical Toxicology, 15(2), 75–98. https://doi.org/10.21608/mjfmct.2007.48851

  • Abdelaziz, I., Elhabiby, M. I., & Ashour, A. A. (2013). Toxicity of cadmium and protective effect of bee honey, vitamins C and B complex. Human and Experimental Toxicology, 32(4), 362–370. https://doi.org/10.1177/0960327111429136

  • Abdelrazek, H. M. A., Helmy, S. A., Elsayed, D. H., Ebaid, H. M., & Mohamed, R. M. (2016). Ameliorating effects of green tea extract on cadmium induced reproductive injury in male Wistar rats with respect to androgen receptors and caspase-3. Reproductive Biology, 16(4), 300–308. https://doi.org/10.1016/j.repbio.2016.11.001

  • Abu-Taweel, G. M. (2016). Effects of curcumin on the social behavior, blood composition, reproductive hormones in plasma and brain acetylcholinesterase in cadmium intoxicated mice. Saudi Journal of Biological Sciences, 23(2), 219–228. https://doi.org/10.1016/j.sjbs.2015.05.010

  • Ahmad, M., Taweel, G. M. A., & Hidayathulla, S. (2018). Nano-composites chitosan-curcumin synergistically inhibits the oxidative stress induced by toxic metal cadmium. International Journal of Biological Macromolecules, 108, 591–597. https://doi.org/10.1016/j.ijbiomac.2017.12.054

  • Aimola, P., Carmignani, M., Volpe, A. R., Di Benedetto, A., Claudio, L., Waalkes, M. P., van Bokhoven, A., Tokar, E. J., & Claudio, P. P. (2012). Cadmium induces p53-dependent apoptosis in human prostate epithelial cells. PLOS One, 7(3), e33647. https://doi.org/10.1371/journal.pone.0033647

  • Akesson, A., Berglund, M., Schütz, A., Bjellerup, P., Bremme, K., & Vahter, M. (2002). Cadmium exposure in pregnancy and lactation in relation to iron status. American Journal of Public Health, 92(2), 284–287. https://doi.org/10.2105/AJPH.92.2.284

  • Albasha, M. O. (2014). Effect of cadmium on the liver and amelioration by aqueous extracts of fenugreek seeds, rosemary, and cinnamon in guinea pigs: Histological and biochemical study. Cell Biology, 2(2), 7–17. https://doi.org/10.11648/j.cb.20140202.11

  • Albishtue, A. A., Yimer, N., Zakaria, M. Z. A., Haron, A. W., Babji, A. S., Abubakar, A. A., & Almhanawi, B. H. (2019). Effects of EBN on embryo implantation, plasma concentrations of reproductive hormones, and uterine expressions of genes of PCNA, steroids, growth factors and their receptors in rats. Theriogenology, 126, 310–319. https://doi.org/10.1016/j.theriogenology.2018.12.026

  • Ali, A. M. A., El-Nour, M. E. A. M., & Yagi, S. M. (2018). Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. Journal of Genetic Engineering and Biotechnology, 16(2), 677–682. https://doi.org/10.1016/j.jgeb.2018.03.003

  • Alkhedaide, A., Alshehri, Z. S., Sabry, A., Abdel-Ghaffar, T., Soliman, M. M., & Attia, H. (2016). Protective effect of grape seed extract against cadmium-induced testicular dysfunction. Molecular Medicine Reports, 13(4), 3101–3109. https://doi.org/10.3892/mmr.2016.4928

  • Alpsoy, S., Kanter, M., Aktas, C., Erboga, M., Akyuz, A., Akkoyun, D. C., & Oran, M. (2014). Protective effects of onion extract on cadmium-induced oxidative stress, histological damage, and apoptosis in rat heart. Biological Trace Element Research, 159(1–3), 297–303. https://doi.org/10.1007/s12011-014-9968-9

  • Aly, F. M., Kotb, A. M., Haridy, M. A. M., & Hammad, S. (2018). Impacts of fullerene C60 and virgin olive oil on cadmium-induced genotoxicity in rats. Science of the Total Environment, 630, 750–756. https://doi.org/10.1016/j.scitotenv.2018.02.205

  • Amamou, F., Nemmiche, S., kaouthar Meziane, R., Didi, A., Yazit, S. M., & Chabane-Sari, D. (2015). Protective effect of olive oil and colocynth oil against cadmium-induced oxidative stress in the liver of Wistar rats. Food and Chemical Toxicology, 78, 177–184. https://doi.org/10.1016/j.fct.2015.01.001

  • Amit, P., Ranjan, D. S., Sutapa, B., & Sukumar, K. (2019). Study on the effects of cadmium chloride on liver and testis in albino rats. Research Journal of Chemistry and Environment, 23(8), 85–93.

  • Andrade, J. M., Faustino, C., Garcia, C., Ladeiras, D., Reis, C. P., & Rijo, P. (2018). Rosmarinus officinalis L.: An update review of its phytochemistry and biological activity. Future Science OA, 4(4), FSO283. https://doi.org/10.4155/fsoa-2017-0124

  • Anyia, A. F. (2016). Protective effect of Garcinia kola seed and honey mixture against cadmium-induced hepatotoxicity in Wistar albino rats. International Journal of Science and Research, 5(5), 356–363.

  • Arroyo, V. S., Flores, K. M., Ortiz, L. B., Gómez-quiroz, L. E., & Gutiérrez-ruiz, M. C. (2013). Liver and cadmium toxicity. Journal of Drug Metabolism and Toxicology, S5(001). https://doi.org/10.4172/2157-7609.s5-001

  • Asmaa, S., Mohamed, Z., & Khaled, S. (2016). The protective role of honey against cytotoxicity of cadmium chloride in mice. African Journal of Biotechnology, 15(46), 2620–2626. https://doi.org/10.5897/ajb2016.15426

  • Ataei, N., Aghaei, M., & Panjehpour, M. (2019). Evidences for involvement of estrogen receptor induced ERK1/2 activation in ovarian cancer cell proliferation by cadmium chloride. Toxicology in Vitro, 56, 184–193. https://doi.org/10.1016/j.tiv.2019.01.015

  • Attia, A. M. M., Ibrahim, F. A. A., Abd El-Latif, N. A., & Aziz, S. W. (2014a). Antioxidant effects of curcumin against cadmium chloride-induced oxidative stress in the blood of rats. Journal of Pharmacognosy and Phytotherapy, 6(3), 33–40. https://doi.org/10.5897/JPP2014.0316

  • Attia, A. M. M., Ibrahim, F. A. A., Abd El-Latif, N. A., Aziz, S. W., & Moussa, S. A. A. (2014b). Protective effects of ginger (Zingiber officinale Roscoe) against cadmium chloride-induced oxidative stress in the blood of rats. Journal of Medicinal Plants Research, 8(39), 1164–1172. https://doi.org/10.5897/jmpr2014.5531

  • Baiomy, A. A., & Mansour, A. A. (2016). Genetic and histopathological responses to cadmium toxicity in rabbit’s kidney and liver: Protection by ginger (Zingiber officinale). Biological Trace Element Research, 170(2), 320–329. https://doi.org/10.1007/s12011-015-0491-4

  • Bashir, N., Manoharan, V., & Miltonprabu, S. (2016). Grape seed proanthocyanidins protects against cadmium induced oxidative pancreatitis in rats by attenuating oxidative stress, inflammation and apoptosis via Nrf-2/HO-1 signaling. The Journal of Nutritional Biochemistry, 32(3), 128–141. https://doi.org/10.1016/j.jnutbio.2016.03.001

  • Berglund, M., Akesson, A., Nermell, B., & Vahter, M. (1994). Intestinal absorption of dietary cadmium in women depends on body iron stores and fiber intake. Environmental Health Perspectives, 102(12), 1058–1066. https://doi.org/10.2307/3431993

  • Beyersmann, D., & Hechtenberg, S. (1997). Cadmium, gene regulation, and cellular signalling in mammalian cells. Toxicology and Applied Pharmacology, 144(2), 247–261. https://doi.org/10.1006/taap.1997.8125

  • Calabrese, E. J. (2002). Part 1. The role of ROS in health disease: Part 2. Proposing a definition of hormesis. Human and Experimental Toxicology, 21(2), 59. https://doi.org/10.1191/0960327102ht209oa

  • Chedrese, P., Piasek, M., & Henson, M. (2008). Cadmium as an endocrine disruptor in the reproductive system. Immunology‚ Endocrine and Metabolic Agents in Medicinal Chemistry, 6(1), 27–35. https://doi.org/10.2174/187152206775528941

  • Chen, Q., Zhang, R., Li, W. M., Niu, Y. J., Guo, H. C., Liu, X. H., Hou, Y. C., & Zhao, L. J. (2013). The protective effect of grape seed procyanidin extract against cadmium-induced renal oxidative damage in mice. Environmental Toxicology and Pharmacology, 36(3), 759–768. https://doi.org/10.1016/j.etap.2013.07.006

  • Chung, L. Y. (2006). The antioxidant properties of garlic compounds: Alyl cysteine, alliin, allicin, and allyl disulfide. Journal of Medicinal Food, 9(2), 205–213. https://doi.org/10.1089/jmf.2006.9.205

  • Dailiah Roopha, P., & Padmalatha, C. (2012). Effect of herbal preparation on heavy metal (cadmium) induced antioxidant system in female Wistar rats. Journal of Medical Toxicology, 8(2), 101–107. https://doi.org/10.1007/s13181-011-0194-y

  • de Angelis, C., Galdiero, M., Pivonello, C., Salzano, C., Gianfrilli, D., Piscitelli, P., Lenzi, A., Colao, A., & Pivonello, R. (2017). The environment and male reproduction: The effect of cadmium exposure on reproductive functions and its implication in fertility. Reproductive Toxicology, 73, 105–127. https://doi.org/10.1016/j.reprotox.2017.07.021

  • DelRaso, N. J., Foy, B. D., Gearhart, J. M., & Frazier, J. M. (2003). Cadmium uptake kinetics in rat hepatocytes: Correction for albumin binding. Toxicological Sciences, 72(1), 19–30. https://doi.org/10.1093/toxsci/kfg009

  • El-Demerdash, F. M., Yousef, M. I., Kedwany, F. S., & Baghdadi, H. H. (2004). Cadmium-induced changes in lipid peroxidation, blood hematology, biochemical parameters and semen quality of male rats: Protective role of vitamin E and β-carotene. Food and Chemical Toxicology, 42(10), 1563–1571. https://doi.org/10.1016/j.fct.2004.05.001

  • El-Shahat, A. E.-R., Gabr, A., Meki, A.-R., & Mehana, E.-S. (2009). Altered testicular morphology and oxidative stress induced by cadmium in experimental rats and protective effect of simultaneous green tea extract. International Journal of Morphology, 27(3), 757–764. https://doi.org/10.4067/s0717-95022009000300020

  • El-Tarras, A. E. S., Attia, H. F., Soliman, M. M., El Awady, M. A., & Amin, A. A. (2016). Neuroprotective effect of grape seed extract against cadmium toxicity in male albino rats. International Journal of Immunopathology and Pharmacology, 29(3), 398–407. https://doi.org/10.1177/0394632016651447

  • Elmenoufy, G. A. M. (2012). Bee honey dose-dependently ameliorates lead acetate- mediated hepatorenal toxicity in rats. Life Science Journal, 9(4), 780–788.

  • Evcimen, M., Aslan, R., & Gulay, M. S. (2018). Protective effects of polydatin and grape seed extract in rats exposed to cadmium. Drug and Chemical Toxicology, 43(3), 225–233. https://doi.org/10.1080/01480545.2018.1480629

  • Eybl, V., Kotyzova, D., & Koutensky, J. (2006). Comparative study of natural antioxidants - Curcumin, resveratrol and melatonin - In cadmium-induced oxidative damage in mice. Toxicology, 225(2–3), 150–156. https://doi.org/10.1016/j.tox.2006.05.011

  • Flora, G., Gupta, D., & Tiwari, A. (2012). Toxicity of lead: A review with recent updates. Interdisciplinary Toxicology, 5(2), 47–58. https://doi.org/10.2478/v10102-012-0009-2

  • Fotakis, G., Cemeli, E., Anderson, D., & Timbrell, J. A. (2005). Cadmium chloride-induced DNA and lysosomal damage in a hepatoma cell line. Toxicology in Vitro, 19(4), 481–489. https://doi.org/10.1016/j.tiv.2005.02.001

  • Gabr, S. A., Alghadir, A. H., & Ghoniem, G. A. (2019). Biological activities of ginger against cadmium-induced renal toxicity. Saudi Journal of Biological Sciences, 26(2), 382–389. https://doi.org/10.1016/j.sjbs.2017.08.008

  • Gaur, S., & Agnihotri, R. (2019). Health effects of trace metals in electronic cigarette aerosols — A systematic review. Biological Trace Element Research, 188, 295–315. https://doi.org/10.1007/s12011-018-1423-x

  • Geng, H. X., & Wang, L. (2019). Cadmium: Toxic effects on placental and embryonic development. Environmental Toxicology and Pharmacology, 67(2), 102–107. https://doi.org/10.1016/j.etap.2019.02.006

  • Giaginis, C., Gatzidou, E., & Theocharis, S. (2006). DNA repair systems as targets of cadmium toxicity. Toxicology and Applied Pharmacology, 213(3), 282–290. https://doi.org/10.1016/j.taap.2006.03.008

  • Hamden, K., Carreau, S., Ellouz, F., Masmoudi, H., & El Feki, A. (2009). Improvement effect of green tea on hepatic dysfunction, lipid peroxidation and antioxidant defence depletion induced by cadmium. African Journal of Biotechnology, 8(17), 4233–4238. https://doi.org/10.5897/AJB2009.000-9409

  • Hart, B. A., Potts, R. J., & Watkin, R. D. (2001). Cadmium adaptation in the lung - A double-edged sword?. Toxicology, 160(1–3), 65–70. https://doi.org/10.1016/S0300-483X(00)00436-4

  • Henson, M. C., & Chedrese, P. J. (2004). Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Experimental Biology and Medicine, 229(5), 383–392. https://doi.org/10.1177/153537020422900506

  • Hussain, B. I., & Al-taee, N. H. (2014). Ameliorated effect of green tea extract on cadmium toxicity in liver and kidney of rats. Journal of Pure and Applied Sciences, 22(6), 1746–1753.

  • Hussein, S. A., Ragab, O. A., & El-Eshmawy, M. A. (2014). Protective effect of green tea extract on cyclosporine A: Induced nephrotoxicity in rats. Journal of Biological Sciences, 14(4), 248–257. https://doi.org/10.3923/jbs.2014.248.257

  • Järup, L. (2003). Hazards of heavy metal contamination. British Medical Bulletin, 68(1), 167–182. https://doi.org/10.1093/bmb/ldg032

  • Järup, L., & Åkesson, A. (2009). Current status of cadmium as an environmental health problem. Toxicology and Applied Pharmacology, 238(3), 201–208. https://doi.org/10.1016/j.taap.2009.04.020

  • Järup, L., Berglund, M., Elinder, C. G., Nordberg, G., & Vahter, M. (1998). Health effects of cadmium exposure - A review of the literature and a risk estimate. Scandinavian Journal of Work, Environment and Health, 24(Suppl. 1), 1–51.

  • Khan, A., Ikram, M., Muhammad, T., Park, J., & Kim, M. O. (2019). Caffeine modulates cadmium-induced oxidative stress, neuroinflammation, and cognitive impairments by regulating Nrf-2/HO-1 in vivo and in vitro. Journal of Clinical Medicine, 8(5), 680. https://doi.org/10.3390/jcm8050680

  • Kim, J. J., Kim, Y. S., & Kumar, V. (2019). Heavy metal toxicity: An update of chelating therapeutic strategies. Journal of Trace Elements in Medicine and Biology, 54, 226–231. https://doi.org/10.1016/j.jtemb.2019.05.003

  • Kim, K. S., Lim, J. S., Son, J. Y., Lee, J., Lee, B. M., Chang, S. C., & Kim, H. S. (2018). Curcumin ameliorates cadmium-induced nephrotoxicity in Sprague-Dawley rats. Food and Chemical Toxicology, 114, 34–40. https://doi.org/10.1016/j.fct.2018.02.007

  • Klaassen, C. D., Liu, J., & Diwan, B. A. (2009). Metallothionein protection of cadmium toxicity. Toxicology and Applied Pharmacology, 238(3), 215–220. https://doi.org/10.1016/j.taap.2009.03.026

  • Kumar, P. V., Pricy, A. A., Kumar, C. S., & Goud, K. K. (2010). Hepatoprotective effect of green tea (Camellia sinensis) on cadmium chloride induced toxicity in rats. Journal of Chemical and Pharmaceutical Research, 2(6), 125–128. https://doi.org/10.5483/BMBRep.2005.38.5.563

  • Lane, E. A., Canty, M. J., & More, S. J. (2015). Cadmium exposure and consequence for the health and productivity of farmed ruminants. Research in Veterinary Science, 101, 132–139. https://doi.org/10.1016/j.rvsc.2015.06.004

  • Lawal, A. O., & Ellis, E. M. (2011). The chemopreventive effects of aged garlic extract against cadmium-induced toxicity. Environmental Toxicology and Pharmacology, 32(2), 266–274. https://doi.org/10.1016/j.etap.2011.05.012

  • Lei, Y., Chen, Q., Chen, J., & Liu, D. (2017). Potential ameliorative effects of grape seed-derived polyphenols against cadmium induced prostatic deficits. Biomedicine and Pharmacotherapy, 91, 707–713. https://doi.org/10.1016/j.biopha.2017.05.006

  • Mahmood, B., Mokhtar, M., & Esfandiar, S. (2015). The impact of green tea (Camellia sinensis) on the amount of gonadotropin hormones (LH, FSH) in immature female rats poisoned with cadmium chloride. Biomedical and Pharmacology Journal, 8(1), 261–268. https://doi.org/10.13005/bpj/607

  • Maisuthisakul, P., Suttajit, M., & Pongsawatmanit, R. (2007). Assessment of phenolic content and free radical-scavenging capacity of some Thai indigenous plants. Food Chemistry, 100(4), 1409–1418. https://doi.org/10.1016/j.foodchem.2005.11.032

  • Massadeh, A. M., Al-Safi, S. A., Momani, I. F., Alomary, A. A., Jaradat, Q. M., & Alkofahi, A. S. (2007). Garlic (Allium sativum L.) as a potential antidote for cadmium and lead intoxication: Cadmium and lead distribution and analysis in different mice organs. Biological Trace Element Research, 120(1–3), 227–234. https://doi.org/10.1007/s12011-007-8017-3

  • Matés, J. M., Segura, J. A., Alonso, F. J., & Márquez, J. (2010). Roles of dioxins and heavy metals in cancer and neurological diseases using ROS-mediated mechanisms. Free Radical Biology and Medicine, 49(9), 1328–1341. https://doi.org/10.1016/j.freeradbiomed.2010.07.028

  • Mężyńska, M., & Brzóska, M. M. (2019). Review of polyphenol-rich products as potential protective and therapeutic factors against cadmium hepatotoxicity. Journal of Applied Toxicology, 39(1), 117–145. https://doi.org/10.1002/jat.3709

  • Miceli, F., Minici, F., Tropea, A., Catino, S., Orlando, M., Lamanna, G., Sagnella, F., Tiberi, F., Bompiani, A., Mancuso, S., Lanzone, A., & Apa, R. (2005). Effects of nicotine on human luteal cells in vitro: A possible role on reproductive outcome for smoking women. Biology of Reproduction, 72(3), 628–632. https://doi.org/10.1095/biolreprod.104.032318

  • Mohammed, E., Hashem, K., & Rheim, M. (2014). Biochemical study on the impact of Nigella sativa and virgin olive oils on cadmium-induced nephrotoxicity and neurotoxicity in rats. Journal of Investigational Biochemistry, 3(2), 71. https://doi.org/10.5455/jib.20140716041908

  • Mohammed, Z. I. (2014). Effect of phenolic compound extract of green tea to ameliorate the cadmium sulphate toxicity on the female rat kidneys. Journal of Pharmacy and Biological Sciences, 9(2), 44–50.

  • Nasiadek, M., Skrzypińska-Gawrysiak, M., Daragó, A., Zwierzyńska, E., & Kilanowicz, A. (2014). Involvement of oxidative stress in the mechanism of cadmium-induced toxicity on rat uterus. Environmental Toxicology and Pharmacology, 38(2), 364–373. https://doi.org/10.1016/j.etap.2014.07.007

  • Nna, V. U., Usman, U. Z., Ofutet, E. O., & Owu, D. U. (2017). Quercetin exerts preventive, ameliorative and prophylactic effects on cadmium chloride-induced oxidative stress in the uterus and ovaries of female Wistar rats. Food and Chemical Toxicology, 102, 143–155. https://doi.org/10.1016/j.fct.2017.02.010

  • Ola-Mudathir, K. F., Suru, S. M., Fafunso, M. A., Obioha, U. E., & Faremi, T. Y. (2008). Protective roles of onion and garlic extracts on cadmium-induced changes in sperm characteristics and testicular oxidative damage in rats. Food and Chemical Toxicology, 46(12), 3604–3611. https://doi.org/10.1016/j.fct.2008.09.004

  • Ospondpant, D., Phuagkhaopong, S., Suknuntha, K., Sangpairoj, K., Kasemsuk, T., Srimaroeng, C., & Vivithanaporn, P. (2019). Cadmium induces apoptotic program imbalance and cell cycle inhibitor expression in cultured human astrocytes. Environmental Toxicology and Pharmacology, 65, 53–59. https://doi.org/10.1016/j.etap.2018.12.001

  • Owen, R. W., Giacosa, A., Hull, W. E., Haubner, R., Würtele, G., Spiegelhalder, B., & Bartsch, H. (2000). Olive-oil consumption and health: The possible role of antioxidants. The Lancet Oncology, 1(2), 107-112. https://doi.org/10.1016/s1470-2045(00)00015-2

  • Patra, R. C., Rautray, A. K., & Swarup, D. (2011). Oxidative stress in lead and cadmium toxicity and its amelioration. Veterinary Medicine International, 2011, 457327. https://doi.org/10.4061/2011/457327

  • Piasek, M., Blanuša, M., Kostial, K., & Laskey, J. W. (2001). Placental cadmium and progesterone concentrations in cigarette smokers. Reproductive Toxicology, 15(6), 673–681. https://doi.org/10.1016/S0890-6238(01)00174-5

  • Prozialeck, W. C., & Edwards, J. R. (2012). Mechanisms of cadmium-induced proximal tubule injury: new insights with implications for biomonitoring and therapeutic interventions. Journal of Pharmacology and Experimental Therapeutics, 343(1), 2–12. https://doi.org/10.1124/jpet.110.166769

  • Puppel, K., Kapusta, A., & Kuczyńska, B. (2015). The etiology of oxidative stress in the various species of animals, a review. Journal of the Science of Food and Agriculture, 95(11), 2179–2184. https://doi.org/10.1002/jsfa.7015

  • Rani, A., Kumar, A., Lal, A., & Pant, M. (2014). Cellular mechanisms of cadmium-induced toxicity: A review. International Journal of Environmental Health Research, 24(4), 378-399. https://doi.org/10.1080/09603123.2013.835032

  • Rikans, L. E., & Yamano, T. (2000). Mechanisms of cadmium-mediated acute hepatotoxicity. Journal of Biochemical and Molecular Toxicology, 14(2), 110–117. https://doi.org/10.1002/(SICI)1099-0461(2000)14:2<110::AID-JBT7>3.0.CO;2-J

  • Sakr, S. A., Bayomy, M. F., & El-Morsy, A. M. (2015). Rosemary extract ameliorates cadmium-induced histological changes and oxidative damage in the liver of albino rat. The Journal of Basic and Applied Zoology, 71, 1–9. https://doi.org/10.1016/j.jobaz.2015.01.002

  • Sarkar, A., Ravindran, G., & Krishnamurthy, V. (2013). A brief review on the effect of cadmium toxicity: From cellular to organ level. International Journal of Biotechnology Research, 3(1), 17–36.

  • Satarug, S., Garrett, S. H., Sens, M. A., & Sens, D. A. (2010). Cadmium, environmental exposure, and health outcomes. Environmental Health Perspectives, 118(2), 182–190. https://doi.org/10.1289/ehp.0901234

  • Satarug, S., Haswell-Elkins, M. R., & Moore, M. R. (2000). Safe levels of cadmium intake to prevent renal toxicity in human subjects. British Journal of Nutrition, 84(6), 791–802. https://doi.org/10.1017/s0007114500002403

  • Singh, N., Rani, P., Gupta, M., & Tandan, N. (2013). Role of green tea on cadmium toxicity on haematological profile of albino rats. American Journal of Phytomedicine and Clinical Therapeutics, 1(5), 537–542.

  • Skipper, A., Sims, J. N., Yedjou, C. G., & Tchounwou, P. B. (2016). Cadmium chloride induces DNA damage and apoptosis of human liver carcinoma cells via oxidative stress. International Journal of Environmental Research and Public Health, 13(1), 1–10. https://doi.org/10.3390/ijerph13010088

  • Spencer, J. P. E. (2003). Metabolism of tea flavonoids in the gastrointestinal tract. The Journal of Nutrition, 133(10), 3255S–3261S. https://doi.org/10.1093/jn/133.10.3255S

  • Suru, S. M. (2008). Onion and garlic extracts lessen cadmium-induced nephrotoxicity in rats. BioMetals, 21(6), 623–633. https://doi.org/10.1007/s10534-008-9148-5

  • Taha, E. A., Sayed, S. K., Ghandour, N. M., Mahran, A. M., Saleh, M. A., Amin, M. M., & Shamloul, R. (2013). Correlation between seminal lead and cadmium and seminal parameters in idiopathic oligoasthenozoospermic males. Central European Journal of Urology, 66(1), 84–92. https://doi.org/10.5173/ceju.2013.01.art28

  • Thompson, J., & Bannigan, J. (2008). Cadmium : Toxic effects on the reproductive system and the embryo. Reproductive Toxicology Journal, 25(3), 304–315. https://doi.org/10.1016/j.reprotox.2008.02.001

  • Ugwuja, E. I., Erejuwa, O. O., & Ugwu, N. C. (2016). Spices mixture containing garlic, ginger and nutmeg has protective effects on the kidneys and liver of cadmium exposed rats. Advanced Pharmaceutical Bulletin, 6(2), 271–274. https://doi.org/10.15171/apb.2016.038

  • van der Wall, E. E. (2010). Increasing recognition of NHJ: A first-time impact factor of 1.4! Netherlands Heart Journal, 18(9), 399. https://doi.org/10.1007/BF03091804

  • Vardhan, K. H., Kumar, P. S., & Panda, R. C. (2019). A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. Journal of Molecular Liquids, 290, 111197. https://doi.org/10.1016/j.molliq.2019.111197

  • Venables, M. C., Hulston, C. J., Cox, H. R., & Jeukendrup, A. E. (2008). Green tea extract ingestion, fat oxidation, and glucose tolerance in healthy humans. American Journal of Clinical Nutrition, 87(3), 778–784. https://doi.org/10.1093/ajcn/87.3.778

  • Virk, P., Elobeid, M., Hamad, S., Korany, Z., Al-Amin, M., Omer, M. D. S., AIOlayan, E., Siddiqui, M. I., & Mirghani, N. M. (2013). Ameliorative effects of Embilica officinalis and Rosmarinus officinalis on cadmium-induced oxidative stress in Wistar rats. Journal of Medicinal Plants Research, 7(14), 805-818. https://doi.org/10.5897/JMPR13.2593

  • Waisberg, M., Joseph, P., Hale, B., & Beyersmann, D. (2003). Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology, 192(2–3), 95–117. https://doi.org/10.1016/S0300-483X(03)00305-6

  • Wang, X., Cui, W., Wang, M., Liang, Y., Zhu, G., Jin, T., & Chen, X. (2021). The association between life-time dietary cadmium intake from rice and chronic kidney disease. Ecotoxicology and Environmental Safety, 211, 111933. https://doi.org/10.1016/j.ecoenv.2021.111933

  • Wang, S., Ren, X., Hu, X., Zhou, L., Zhang, C., & Zhang, M. (2019). Cadmium-induced apoptosis through reactive oxygen species-mediated mitochondrial oxidative stress and the JNK signaling pathway in TM3 cells, a model of mouse Leydig cells. Toxicology and Applied Pharmacology, 368, 37–48. https://doi.org/10.1016/j.taap.2019.02.012

  • Wani, F. A., Ibrahim, M. A., Moneim, M. M. A., & Almaeen, A. R. H. A. (2018). Cytoprotectant and anti-oxidant effects of olive oil on cadmium induced nephrotoxicity in mice. Open Journal of Pathology, 8(1), 31–46. https://doi.org/10.4236/ojpathology.2018.81004

  • World Health Organization. (2010). Exposure to cadmium: A major public health concern. WHO. http://www.who.int/ipcs/features/cadmium.pdf

  • Yang, J. M., Arnush, M., Chen, Q. Y., Wu, X. D., Pang, B., & Jiang, X. Z. (2003). Cadmium-induced damage to primary cultures of rat Leydig cells. Reproductive Toxicology, 17(5), 553–560. https://doi.org/10.1016/S0890-6238(03)00100-X

  • Yang, S. H., He, J. Bin, Yu, L. H., Li, L., Long, M., Liu, M. Da, & Li, P. (2019). Protective role of curcumin in cadmium-induced testicular injury in mice by attenuating oxidative stress via Nrf2/ARE pathway. Environmental Science and Pollution Research, 34575–34583. https://doi.org/10.1007/s11356-019-06587-9

  • Zhang, H., & Reynolds, M. (2019). Cadmium exposure in living organisms: A short review. Science of the Total Environment, 678, 761–767. https://doi.org/10.1016/j.scitotenv.2019.04.395

  • Zhang, T., Gao, X., Luo, X., Li, L., Ma, M., Zhu, Y., Zhao, L., & Li, R. (2019). The effects of long-term exposure to low doses of cadmium on the health of the next generation of mice. Chemico-Biological Interactions, 312, 108792. https://doi.org/10.1016/j.cbi.2019.108792

  • Zhang, W., & Jia, H. (2007). Effect and mechanism of cadmium on the progesterone synthesis of ovaries. Toxicology, 239(3), 204–212. https://doi.org/10.1016/j.tox.2007.07.007

ISSN 0128-7702

e-ISSN 2231-8534

Article ID

JTAS-2090-2020

Download Full Article PDF

Share this article

Related Articles