e-ISSN 2231-8542
ISSN 1511-3701
Samsul Muarif, Endang Sulistyaningsih, Valentina Dwi Suci Handayani and Alim Isnansetyo
Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 4, November 2022
DOI: https://doi.org/10.47836/pjtas.45.4.02
Keywords: Growth hormones, nitrogen, phosphorus, potassium, sandy soil
Published on: 4 November 2022
Fertilizers derived from natural materials, such as Sargassum sp. (seaweed), are a promising technique to overcome the negative impact of overuse of inorganic fertilizers. Groundwater contamination, soil degradation, and changes in the soil microorganism community are problems related to overdosing on inorganic fertilizer during crop production. The use of Sargassum compost (SC) as a substitute inorganic fertilizer was tested by evaluating the growth and yield of shallot grown on sandy soil. The research was arranged in a randomized complete block design consisting of four treatments and three blocks of replications. The treatments involved substituting SC for inorganic fertilizer, which were 100% inorganic, 25% SC + 75% inorganic, 50% SC + 50% inorganic, and 75% SC + 25% inorganic, respectively. The compositions of nitrogen (N), phosphorus (P), potassium (K), sodium (Na), sulfur (S), auxin, gibberellin, cytokinin, and kinetin in SC, as well as the growth and yield of shallot, were analyzed by analysis of variance followed by the least significant difference test. The results showed that the SC contained high organic matter (45.78%), nitrogen (4.1%), phosphate (0.5%), potassium (0.8%), sodium (7.2%), sulfur (0.2%), and plant growth hormones, such as auxin (8.14 mg.g−1), gibberellin (15.97 mg.g−1), cytokinin (7.70 mg.g−1), and kinetin (2.78 mg.g−1). Interestingly, all substitution levels of the SC for inorganic fertilizer improved nutrient absorption in the leaves, roots, and bulbs. Moreover, the growth and yield of shallot were not significantly different among the treatments. Therefore, to provide sufficient nutrients and growth hormones, SC could be substituted for up to 75% of organic fertilizers for shallot plants.
Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Agricultural importance of algae. African Journal of Biotechnology, 11(54), 11648-11658. https://doi.org/10.5897/AJB11.3983
Aghajanzadeh, T. A., Reich, M., Hawkesford, M. J., & Burow, M. (2018). Sulfur metabolism in Allium cepa is hardly affected by chloride and sulfate salinity. Archives of Agronomy and Soil Science, 65(7), 945-956. https://doi.org/10.1080/03650340.2018.1540037
Agirman, N., & Cetin, A. K. (2015). Effects of nitrogen starvations on cell growth, protein and lipid amount of Chlorella vulgaris. Fresen Environ Bull, 24(11), 3643-3648.
Amujoyegbe, B. J., Opabode, J. T., & Olayinka, A. (2007). Effect of organic and inorganic fertilizer on yield and chlorophyll content of maize (Zea mays L.) and Sorghum bicolor (L.) Moench. African Journal of Biotechnology, 6(16), 1869-1873. https://doi.org/10.5897/AJB2007.000-2278
Anbes, T., Worku, W., & Beshir, H. M. (2018). Effects of seedling age and rates of phosphorus fertilizer on growth and yield performance of onion (Allium cepa L.) under irrigation at Alage, Central Rift Valley of Ethiopia. African Journal of Plant Science, 12(9), 215-226. https://doi.org/10.5897/AJPS2018.1694
Ashley, M. K., Grant, M., & Grabov, A. (2006). Plant responses to potassium deficiencies: A role for potassium transport proteins. Journal of Experimental Botany, 57(2), 425-436. https://doi.org/10.1093/jxb/erj034
Astaneh, R. K., Bolandnazar, S., Nahandi, F. Z., & Oustan, S. (2018). The effects of selenium on some physiological traits and K, Na concentration of garlic (Allium sativum L.) under NaCl stress. Information Processing in Agriculture, 5(1), 156-161. https://doi.org/10.1016/j.inpa.2017.09.003
Balittanah. (2009). Petunjuk teknis: Analisis kimia tanah, tanaman, air dan pupuk (edisi 2) [Technical instructions: Chemical analysis of soil, plants, water and fertilizers (2nd ed)]. Balai Penelitian Tanah.
Buttò, V., Deslauriers, A., Rossi, S., Rozenberg, P., Shishov, V., & Morin, H. (2020). The role of plant hormones in tree-ring formation. Trees, 34, 315-335. https://doi.org/10.1007/s00468-019-01940-4
Chatterjee, A., Singh, S., Agrawal, C., Yadav, S., Rai, R., & Rai, L. C. (2017). Role of algae as a biofertilizer. Journal Algal Green Chemistry, 2017, 189-200. https://doi.org/10.1016/B978-0-444-63784-0.00010-2
de Siqueira Castro, J., Calijuri, M. L., Assemany, P. P., Cecon, P. R., Assis, I. R., & Ribeiro, F. J. (2017). Microalgae biofilm in soil: Greenhouse gas emissions, ammonia volatilization and plant growth. Science of the Total Environment, 574, 1640–1648. https://doi.org/10.1016/j.scitotenv.2016.08.205
Dineshkumar, R., Subramanian, J., Arumugam, A., Rasheeq, A. A., & Sampathkumar, P. (2020). Exploring the microalgae biofertilizer effect on onion cultivation by field experiment. Journal Waste and Biomass Valorization, 11, 77-87. https://doi.org/10.1007/s12649-018-0466-8
Divya, K., Roja, N. M., & Padal, S. B. (2015). Effect of seaweed liquid fertilizer of Sargassum wightii on germination, growth and productivity of brinjal. International Journal of Advanced Research in Science, Engineering and Technology, 2(10), 868-871.
Elumalai, L. K. & Rengasamy, R. (2012). Synergistic effect of seaweed manure and Bacillus sp. on growth and biochemical constituents of Vigna radiata L. Journal of Biofertilizers and Biopesticides, 3(3), 1000121. https://doi.org/10.4172/2155-6202.1000121
Flórez-Fernández, N., Illera, M., Sanchez, M., Lodeiro, P., Torres, M. D., López-Mosquera, M. E., Soto, M., de Vicente, M. S., & Dominguez, H. (2021). Integrated valorization of Sargassum muticum in biorefineries. Chemical Engineering Journal, 404, 125635. https://doi.org/10.1016/j.cej.2020.125635
González-Morales, S., Pérez-Labrada, F., García-Enciso, E. L., Leija-Martínez, P., Medrano-Macías, J., Dávila-Rangel, I. E., Juárez-Maldonado, A., Rivas-Martínez, E. N., & Benavides-Mendoza, A. (2017). Selenium and sulfur to produce Allium functional crops. Molecules, 22(4), 558. https://doi.org/10.3390/molecules22040558
Gunadi, N. (2009). Kalium sulfat dan kalium klorida sebagai sumber pupuk kalium pada tanaman bawang merah [Potassium sulfate and potassium chloride as a source of potash fertilizers in onion plants]. Jurnal Hortikultura, 19(2). https://doi.org/10.21082/jhort.v19n2.2009.p%p
Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Al Mahmud, J., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. https://doi.org/10.3390/antiox9080681
Iqbal, A., Qiang, D., Zhun, W., Xiangru, W., Huiping, G., Hengheng, Z., Nianchang, P., Xiling, Z., & Meizhen, S. (2020). Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. Plant Physiology and Biochemistry, 149, 61-74. https://doi.org/10.1016/j.plaphy.2020.02.002
Isnansetyo, A., Lutfia, F. N. L., Nursid, M., & Susidarti, R. A. (2017). Cytotoxicity of fucoidan from three tropical brown algae against breast and colon cancer cell lines. Pharmacognosy Journal, 9(1), 14-20. https://doi.org/10.5530/pj.2017.1.3
Linskens, H. F., & Jackson, J. F. (Eds.) (1987). High performance liquid chromatography in plant sciences (1st ed.). Springer. https://doi.org/10.1007/978-3-642-82951-2
Liu, B., Wang, X., Ma, L., Chadwick, D., & Chen, X. (2021). Combined applications of organic and synthetic nitrogen fertilizers for improving crop yield and reducing reactive nitrogen losses from China’s vegetable systems: A meta-analysis. Environmental Pollution, 269, 116143. https://doi.org/10.1016/j.envpol.2020.116143
Minhal, F., Ma’as, A., Hanudin, E., & Sudira, P. (2019). Perbaikan status lengas, hara, dan produktivitas bawang merah di tanah pasir pantai menggunakan amelioran mineral dan biopolimer [Improvement of moisture status, nutrients, and onion productivity in coastal sand soils using mineral ameliorants and biopolymers] [Doctoral dissertation, Universitas Gadjah Mada]. Perpustakaan Universitas Gadjah Mada. http://etd.repository.ugm.ac.id/penelitian/detail/179080
Ministry of Agriculture. (2011). Peraturan Menteri Pertanian Nomor 70/Permentan/SR.140/10/2011: Pupuk organik, pupuk hayati dan pembenah tanah [Regulation of the Minister of Agriculture Number 70/Permentan/SR.140/10/2011: Organic fertilizers, biofertilizers and soil reformers]. MOA. https://peraturan.bpk.go.id/Home/Details/160135/permentan-no-70permentansr140102011-tahun-201
Ministry of Agriculture. (2019). Buletin konsumsi pangan [Food consumption bulletin]. MOA. https://www.coursehero.com/file/65424518/Buletin-Konsumsi-Vol-10-No-1-2019pdf/
Muslimin, M., & Sari, W. K. P. (2017). Budidaya rumput laut Sargassum sp. dengan metode kantong pada beberapa tingkat kedalaman di dua wilayah perairan berbeda [Seaweed cultivation Sargassum sp. by the bagging method at several levels of depth in two different water areas]. Jurnal Riset Akuakultur, 12(3), 221-230. https://doi.org/10.15578/jra.12.3.2017.221-230
Nabti, E., Jha, B., & Hartmann, A. (2017). Impact of seaweeds on agricultural crop production as biofertilizer. International Journal of Environmental Science and Technology, 14, 1119-1134. https://doi.org/10.1007/s13762-016-1202-1
Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. S. P. (2014). Response of plants to water stress. Frontiers in Plant Science, 5, 86. https://doi.org/10.3389/fpls.2014.00086
Pardo, J. M., & Quintero, F. J. (2002). Plants and sodium ions: Keeping company with the enemy. Genome Biology, 3, reviews1017. https://doi.org/10.1186/gb-2002-3-6-reviews1017
Raghunandan, B. L., Vyas, R. V., Patel, H. K., & Jhala, Y. K. (2019). Perspectives of seaweed as organic fertilizer in agriculture. In D. Panpatte & Y. Jhala (Eds.), Soil fertility management for sustainable development (pp. 267-289). Springer. https://doi:10.1007/978-981-13-5904-0_13
Rahman, K. M. A., & Zhang, D. (2018). Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability. Sustainability, 10(3), 759. https://doi.org/10.3390/su10030759
Renuka, N., Prasanna, R., Sood, A., Ahluwalia, A. S., Bansal, R., Babu, S., Singh, R., Shivay, Y. S., & Nain, L. (2016). Exploring the efficacy of wastewater-grown microalgal biomass as a biofertilizer for wheat. Environmental Science and Pollution Research, 23, 6608-6620. https://doi.org/10.1007/s11356-015-5884-6
Roba, T. B. (2018). Review on: The effect of mixing organic and inorganic fertilizer on productivity and soil fertility. Open Access Library Journal, 5, e4618. https://doi.org/10.4236/oalib.1104618
Sembera, J. A., Meier, E. J., & Waliczek, T. M. (2018). Composting as an alternative management strategy for Sargassum drifts on coastlines. HortTechnology, 28(1), 80-84. https://doi.org/10.21273/HORTTECH03836-17
Setiawati, M. R., Herdiyantoro, D., Damayani, M., & Suryatmana, P. (2018). Analisis C, N, C/N ratio tanah dan hasil padi yang diberi pupuk organik dan pupuk hayati berbasis Azolla pada lahan sawah organik [Analysis of C, N, C/N ratio of soil and rice yield fed with organic fertilizer and Azolla-based biofertilizer on organic rice fields]. Soilrens, 16(2), 30-36. https://doi.org/10.24198/soilrens.v16i2.20857
Silva, L. D., Bahcevandziev, K., & Pereira, L. (2019). Production of bio-fertilizer from Ascophyllum nodosum and Sargassum muticum (Phaeophyceae). Journal of Oceanology and Limnology, 37, 918-927. https://doi.org/10.1007/s00343-019-8109-x
Šimanský, V., Juriga, M., Jonczak, J., Uzarowicz, Ł., & Stępień, W. (2019). How relationships between soil organic matter parameters and soil structure characteristics are affected by the long-term fertilization of a sandy soil. Geoderma, 342, 75-84. https://doi.org/10.1016/j.geoderma.2019.02.020
Sinulingga, M., & Darmanti, S. (2007). Kemampuan mengikat air oleh tanah pasir yang diperlakukan dengan tepung rumput laut Gracilaria verrucose [The ability to bind water by sand soil treated with seaweed flour Gracilaria verrucose]. Buletin Anatomi dan Fisiologi, 15(2), 32-38. https://doi.org/10.14710/baf.v15i2.2570
Sulistyaningsih, E., Pangestuti, R., & Rosliani, R. (2020). Growth and yield of five prospective shallot selected accessions from true shallot seeds in lowland areas. Agricultural Science, 5(2), 92-97. https://doi.org/10.22146/ipas.52457
Syamsiyah, J., Herawati, A., & Binafsihi, W. (2020). Study of levels water salinity on the growth of varieties of shallots (Allium ascalonicum L.) in Alfisols. In IOP Conference Series: Earth and Environmental Science (Vol. 423, No. 1, p. 012065). IOP Publishing. https://doi.org/10.1088/1755-1315/423/1/012065
Wang, M., Chen, L., Li, Y., Chen, L., Liu, Z., Wang, X., Yan, P., & Qin, S. (2018). Responses of soil microbial communities to a short-term application of seaweed fertilizer revealed by deep amplicon sequencing. Applied Soil Ecology, 125, 288-296. https://doi.org/10.1016/j.apsoil.2018.02.013
Widyartini, D. S., Widodo, P., & Susanto, A. B. (2017). Thallus variation of Sargassum polycystum from Central Java, Indonesia. Biodiversitas, 18(3), 1004-1011. https://doi.org/10.13057/biodiv/d180319
Wu, H. (2018). Plant salt tolerance and Na+ sensing and transport. The Crop Journal, 6(3), 215-225. https://doi.org/10.1016/j.cj.2018.01.003
ISSN 1511-3701
e-ISSN 2231-8542