e-ISSN 2231-8542
ISSN 1511-3701
Regina Zhi-Ling Leong, Vi-Sion Chang, Lai-Huat Lim and Swee-Sen Teo
Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 3, August 2022
DOI: https://doi.org/10.47836/pjtas.45.3.09
Keywords: Aquaponic, basil, biofertilizer, seaweed solid waste, sustainable agriculture
Published on: 8 August 2022
Nutrient recycling from biowaste is one of the sustainable approaches to managing waste. The aquaponic system is one of the nutrient recycling methods that can reduce water consumption and reuse the nutrient available in its ecosystem. The nutrient to fertilize the plant in aquaponic depends on the activities of microbes to convert the waste into the nutrient. To enhance the growth of the plants, some aquaponics systems still rely on chemical fertilizers. Kappaphycus alvarezii is one of the red seaweeds abundantly found in East Malaysia. After numerous processes such as carrageenan extraction, the biowaste derived from K. alvarezii still contains a nutrient that can be recycled. The present study explores the potential of K. alvarezii solid waste as fertilizer to grow Ocimum basilicum in an aquaponics system. In this study, the macro- and micronutrients in K. alvarezii solid waste were determined, and the prevalence of microbes in the aquaponics system was monitored using inductively coupled plasma-optical emission spectrometer (ICP-OES) and 16S metagenomic sequencing method, respectively. Based on the findings, the growth of O. basilicum supplemented with K. alvarezii biofertilizer was significantly higher than the negative control. For genetic expression study in O. basilicum, cinnamyl alcohol dehydrogenase (CAD), phenylalanine ammonia-lyase (PAL), and cytochrome p450 reductase (CPR) genes were upregulated. The O. basilicum is free from mycotoxin and heavy metals. Since K. alvarezii solid waste is rich with macro- and micronutrients, which are essential for plant growth and can enhance the growth of O. basilicum, K. alvarezii solid waste produced from bioethanol production could be a potential fertilizer.
Arioli, T., Mattner, S. W., & Winberg, P. C. (2015). Applications of seaweed extracts in Australian agriculture: Past, present and future. Journal of Applied Phycology, 27, 2007–2015. https://doi.org/10.1007/s10811-015-0574-9
Assi, M. A., Hezmee, M. N. M., Haron, A. W., Sabri, M. Y. M., & Rajion, M. A. (2016). The detrimental effects of lead on human and animal health. Veterinary World, 9(6), 660–671. https://doi.org/10.14202/vetworld.2016.660-671
Ayabe, S. I., & Akashi, T. (2006). Cytochrome P450s in flavonoid metabolism. Phytochemistry Reviews, 5, 271–282. https://doi.org/10.1007/s11101-006-9007-3
Benítez García, I., Dueñas Ledezma, A. K., Martínez Montaño, E., Salazar Leyva, J. A., Carrera, E., & Osuna Ruiz, I. (2020). Identification and quantification of plant growth regulators and antioxidant compounds in aqueous extracts of Padina durvillaei and Ulva lactuca. Agronomy, 10(6), 866. https://doi.org/10.3390/agronomy10060866
Bennett, J. W., & Klich, M. (2003). Mycotoxins. Clinical Microbiology Reviews, 16(3), 497–516. https://doi.org/10.1128/CMR.16.3.497
Bernard, A. (2008). Cadmium and its adverse effects on human health. The Indian Journal of Medical Research, 128(4), 557–564.
Bindraban, P. S., Dimkpa, C., Nagarajan, L., Roy, A., & Rabbinge, R. (2015). Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biology and Fertility of Soils, 51, 897–911. https://doi.org/10.1007/s00374-015-1039-7
Bjørklund, G., Dadar, M., Mutter, J., & Aaseth, J. (2017). The toxicology of mercury: Current research and emerging trends. Environmental Research, 159, 545-554. https://doi.org/10.1016/j.envres.2017.08.051
Chang, X. M., Alderson, P. G., & Wright, C. J. (2005). Effect of temperature integration on the growth and volatile oil content of basil (Ocimum basilicum L.). The Journal of Horticultural Science and Biotechnology, 80(5), 593–598. https://doi.org/10.1080/14620316.2005.11511983
Charles, D. J., & Simon, J. E. (1990). Comparison of extraction methods for the rapid determination of essential oil content and composition of basil. Journal of the American Society for Horticultural Science, 115(3), 458–462. https://doi.org/10.21273/JASHS.115.3.458
Chen, Z. M., Ding, W. X., Xu, Y. H., Müller, C., Rüttinget, T., Yu, H. Y., Fan, J. L., Zhang, J. B., & Zhu, T. B. (2015). Importance of heterotrophic nitrification and dissimilatory nitrate reduction to ammonium in a cropland soil: Evidences from a 15N tracing study to literature synthesis. Soil Biology and Biochemistry, 91, 65–75. https://doi.org/10.1016/j.soilbio.2015.08.026
De Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P., & Schijoerring, J. K. (2020). The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytologist, 229(5), 2446-2469. https://doi.org/10.1111/nph.17074
Gallo, M. A. (2001). General principles of toxicology. In D. K. Curtis (Ed.), Casarett and Doull’s toxicology: The basic science of poisons (pp. 3-10). Mc-Graw Hill.
Gelli, V. C., Patino, M. T., Rocha, J. V., Barbieri, E., Miranda-Filho, K. C., & Henriques, M. B. (2020). Production of the Kappaphycus alvarezii extract as a leaf biofertilizer: Technical and economic analysis for the north coast of São Paulo-Brazil. Boletim do Instituto de Pesca, 46(2), e568. https://doi.org/10.20950/1678-2305.2020.46.2.568
Ghaderiardakani, F., Collas, E., Damiano, D. K., Tagg, K., Graham, N. S., & Coates, J. C. (2019). Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Scientific Reports, 9, 1983. https://doi.org/10.1038/s41598-018-38093-2
Han, S. H., An, J. Y., Hwang, J. H., Kim, S. B., & Park, B. B. (2016). The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron tulipifera Lin.) in a nursery system. Forest Science and Technology, 12(3), 137–143. https://doi.org/10.1080/21580103.2015.1135827
He, T. X., Li, Z. L., Sun, Q., Xu, Y., & Ye, Q. (2016). Heterotrophic nitrification and aerobic denitrification by Pseudomonas tolaasii Y-11 without nitrite accumulation during nitrogen conversion. Bioresource Technology, 200, 493–499. https://doi.org/10.1016/j.biortech.2015.10.064
Hemathilake, D. M. K. S., & Gunathilake, D. M. C. C. (2022). Agricultural productivity and food supply to meet increased demands. In Future food: Global trends, opportunities, sustainable challenges (pp. 539-553). Academic Press. https://doi.org/10.1016/B978-0-323-91001-9.00016-5
Hussain, N., & Abbasi, S. A. (2018). Efficacy of the vermicomposts of different organic wastes as “clean” fertilizers: State-of-the-art. Sustainability, 10(4), 1205. https://doi.org/10.3390/su10041205
Iijima, Y., Wang, G. D., Fridman, E., & Pichersky, E. (2006). Analysis of the enzymatic formation of citral in the glands of sweet basil. Archives Biochemistry and Biophysics, 448(1-2), 141–149. https://doi.org/10.1016/j.abb.2005.07.026
Jamali, C. A., Kasrati, A., Bekkouche, K., Hassani, L., Wohlmuth, H., Leach, D., & Abbad, A. (2014). Cultivation and the application of inorganic fertilizer modifies essential oil composition in two Moroccan species of Thymus. Industrial Crops and Products, 62, 113–118. https://doi.org/10.1016/j.indcrop.2014.08.017
Kathiravan, V., & Krishnani, K. K. (2014). Pseudomonas aeruginosa and Achromobacter sp.: Nitrifying aerobic denitrifiers have a plasmid encoding for denitrifying functional genes. World Journal of Microbiology and Biotechnology, 30, 1187–1198. https://doi.org/10.1007/s11274-013-1543-6
Liu, C. W., Sung, Y., Chen, B. C., & Lai, H. Y. (2014). Effects of nitrogen fertilizers on the growth and nitrate content of Lettuce (Lactuca sativa L.). International Journal of Environmental Research and Public Health, 11(4), 4427–4440. https://doi.org/10.3390/ijerph110404427
Lobo, I. (2008). Environmental influences on gene expression. Nature Education, 1(1), 39.
Mandoulakani, B. A., Eyvazpour, E., & Ghadimzadeh, M. (2017). The effect of drought stress on the expression of key genes involved in the biosynthesis of phenylpropanoids and essential oil components in basil (Ocimum basilicum L.). Phytochemistry, 139, 1–7. https://doi.org/10.1016/j.phytochem.2017.03.006
McCauley, A., Jones, C,. & Jacobsen, J. (2011). Plant nutrient functions and deficiency and toxicity symptoms. https://mtvernon.wsu.edu/path_team/Plant-Nutrient-Functions-and-Deficiency-and-Toxicity-Symptoms-MSU-2013.pdf
Misra, R. C., Sharma, S., Sandeep, S., Garg, A., Chanotiya, C. S., & Ghosh, S. (2017). Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis. New Phytologist, 214(2), 706–720. https://doi.org/10.1111/nph.14412
Mohammed Abdul, K. S., Jayasinghe, S. S., Chandana, E. P. S., Jayasumana, C., & De Silva, P. M. C. S. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40(3), 828–846. https://doi.org/10.1016/j.etap.2015.09.016
Moncada, A., Vetrano, F., Esposito, A., & Miceli, A. (2022). Effects of NAA and Ecklonia maxima extracts on lettuce and tomato transplant production. Agronomy, 12(2), 329. https://doi.org/10.3390/agronomy12020329
Nawaz, A., & Farroq, M. (2021). Agricultural practices and sustainable management. In W. L. Filho, A. M. Azul, K. Brandli, S. A. Lange, & T. Wall (Eds.), Life on land: Encyclopedia of the UN Sustainable Development Goals (pp. 36-48). Springer. https://doi.org/10.1007/978-3-319-95981-8_112
Nelson, R. L. (2017). Aquaponics. In P. W. Perschbacher & R. R. Stickney (Eds.), Tilapia in intensive co-culture (pp. 246–260). John Wiley & Sons. https://doi.org/10.1002/9781118970652.ch15
Oladimeji, A. S., Olufeagba, S. O., Ayuba, V. O., Sololmon, S. G., & Okomoda, V. T. (2018). Effects of different growth media on water quality and plant yield in a catfish-pumpkin aquaponics system. Journal of King Saud University-Science, 32(1), 60-66. https://doi.org/10.1016/j.jksus.2018.02.001
Osuagwu, G. G. E., & Edeoga, H. O. (2013). Influence of NPK inorganic fertilizer treatment on the proximate composition of the leaves of Ocimum gratissimum (L.) and Gongronema latifolium (Benth). Pakistan Journal of Biology Sciences, 16(8), 372–378. https://doi.org/10.3923/pjbs.2013.372.378
Park, J. D., & Zheng, W. (2012). Human exposure and health effects of inorganic and elemental mercury. Journal of Preventive Medicine and Public Health, 45(6), 344–352. https://doi.org/10.3961/jpmph.2012.45.6.344
Patra, R. C., Rautray, A. K., & Swarup, D. (2011). Oxidative stress in lead and cadmium toxicity and its amelioration. Veterinary Medicine International, 2011, 457327. https://doi.org/10.4061/2011/457327
Petropoulos, S. A., Fernandes, A., Plexida, S., Chrysargyris, A., Tzortzakis, N., Barreira, J. C. M., Barros, L., & Ferreira, I. C. F. R. (2020). Biostimulants application alleviates water stress effects on yield and chemical composition of greenhouse green bean (Phaseolus vulgaris L.). Agronomy, 10(2), 181. https://doi.org/10.3390/agronomy10020181
Raven, J. A., Wollenweber, B., & Handley, L. L. (1992). A comparison of ammonium and nitrate as nitrogen-sources for photolithotrophs. New Phytologist, 121(1), 19–32. https://doi.org/10.1111/j.1469-8137.1992.tb01088.x
Russell, S. (2009). Fish pond water quality: As simple as chemistry 101. Noble Research Institute. https://www.noble.org/news/publications/ag-news-and-views/2009/july/fish-pond-water-quality-as-simple-as-chemistry-101/
Saha, S., Monroe, A., & Day, M. R. (2016). Growth, yield, plant quality and nutrition of basil (Ocimum basilicum L.) under soilless agricultural systems. Annals of Agricultural Sciences, 61(2), 181–186. https://doi.org/10.1016/j.aoas.2016.10.001
Sahrawat, K. L. (2008). Factors affecting nitrification in soils. Communications in Soil Science and Plant Analysis, 39(9-10), 1436–1446. https://doi.org/10.1080/00103620802004235
Salama, Z. A., El-Baz, F. K., Gaafar, A. A., Zaki, M. F. (2015). Antioxidant activities of phenolics, flavonoids and vitamin C in two cultivars of fennel (Foeniculum vulgare Mill.) in responses to organic and bio-organic fertilizers. Journal of the Saudi Society of Agricultural Sciences, 14(1), 91–99. https://doi.org/10.1016/j.jssas.2013.10.004
Shahrajabian, M. H., Sun, W., & Chang, Q. (2020). Chemical components and pharmacological benefits of Basil (Ocimum basilicum): A review. International Journal of Food Properties, 23(1), 1961-1970. https://doi.org/10.1080/10942912.2020.1828456
Sharkey, T. D. (2020). Emerging research in plant photosynthesis. Emerging Topics in Life Sciences, 4(2), 137-150. https://doi.org/10.1042/ETLS20200035
Sonmezdag, A. S., Amanpour, A., Kelebek, H., & Selli, S. (2018). The most aroma-active compounds in shade-dried aerial parts of basil obtained from Iran and Turkey. Industrial Crops and Products, 124, 692–698. https://doi.org/10.1016/j.indcrop.2018.08.053
Sorata, Y., Takahama, U., & Kimura, M. (1984). Protective effect of quercetin and rutin on photosensitized lysis of human erythrocytes in the presence of hematoporphyrin. Biochimica et Biophysica Acta - General Subjects, 799(3), 313–317. https://doi.org/10.1016/0304-4165(84)90276-9
Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., & Schmidt, U. (2016). Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agricultural Water Management, 178, 335–344. https://doi.org/10.1016/j.agwat.2016.10.013
Tawfeeq, A., Culham, A., Davis, F., & Reeves, M. (2016). Does fertilizer type and method of application cause significant differences in essential oil yield and composition in rosemary (Rosmarinus officinalis L.)?. Industrial Crops and Products, 88, 17–22. https://doi.org/10.1016/j.indcrop.2016.03.026
Torel, J., Cillard, J., & Cillard, P. (1986). Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochemistry, 25(2), 383–385. https://doi.org/10.1016/S0031-9422(00)85485-0
United Nations Department of Economic and Social Affairs. (2017). World population prospects: The 2017 revision. https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html
Van Gerrewey, T., Boon, N., & Geeen, D. (2022). Vertical farming: The only way is up?. Agronomy, 12(1), 2. https://doi.org/10.3390/agronomy12010002
Wang, B. Z., Tian, J. Z., Yin, J., & Shi, G. M. (1989). Ammonia nitrite and nitrate nitrogen removal from polluted source water with ozonation and BAC processes. Ozone: Science and Engineering, 11(2), 227–244. https://doi.org/10.1080/01919518908552438
Wang, G. J., Dudareva, N., Nam, K. H., Simon, J. E., Lewinsohn, E., & Pichersky, E. (2001). An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant Physiology, 125(2), 539–555. https://doi.org/10.1104/pp.125.2.539
Wurts, W. A., & Durborow, R. M. (1992). Interactions of pH, carbon dioxide, alkalinity and hardness in fish ponds. https://www.researchgate.net/publication/237475261_Interactions_of_pH_Carbon_Dioxide_Alkalinity_and_Hardness_in_Fish_Ponds
Xu, D., Xiao, E. R., Xu, P., Zhou, Y., He, F., Zhou, Q., Xu, D., & Wu, Z. (2017a). Performance and microbial communities of completely autotrophic denitrification in a bioelectrochemically-assisted constructed wetland system for nitrate removal. Bioresource Technology, 228, 39–46. https://doi.org/10.1016/j.biortech.2016.12.065
Xu, Y., He, T. X., Li, Z. L., Ye, Q., Chen, Y., Xie, E., & Zhang, X. (2017b). Nitrogen removal characteristics of Pseudomonas putida Y-9 capable of heterotrophic nitrification and aerobic denitrification at low temperature. Biomed Research International, 2017, 1429018. https://doi.org/10.1155/2017/1429018
ISSN 1511-3701
e-ISSN 2231-8542