e-ISSN 2231-8542
ISSN 1511-3701
Diana Rachmawati, Tita Elfitasari, Istiyanto Samidjan, Dewi Nurhayati and Putut Har Riyadi
Pertanika Journal of Tropical Agricultural Science, Volume 45, Issue 4, November 2022
DOI: https://doi.org/10.47836/pjtas.45.4.12
Keywords: Catfish, efficiency, feed, growth, lysine
Published on: 4 November 2022
The high consumer demand in Indonesia encourages catfish farmers to conduct an intensive culture. A low feed efficiency mainly occurs in cultivating Sangkuriang catfish resulting in poor growth. This condition might be caused by low lysine content, as lysine is an essential amino acid that the fish cannot synthesize. The present study aimed to investigate the effect of lysine supplementation in feed on protein digestibility, feed efficiency, and growth of Sangkuriang catfish (Clarias gariepinus var. Sangkuriang) fingerlings. The study used 270 Sangkuriang catfish with an average wet weight of 7.54 ± 0.13 g/fish. The experimental feed contained protein, energy, and amino acid, and then various doses of lysine were added to the experimental feed: (1) 0.0%, (2) 0.5%, (3) 1.0%, (4) 1.5%, (5) 2.0%, and (6) 2.5%. Weight gain (WG), protein digestibility (ADCp), the efficiency of feed utilization (EFU), relative growth rate (RGR), feed conversion ratio (FCR), protein efficiency ratio (PER), and protein retention (PR) of catfish were evaluated for 8 weeks. The results found that the supplementation of lysine in feed significantly (P < 0.05) influenced WG, ADCp, EFU, RGR, FCR, PER, and PR of Sangkuriang catfish fingerling. However, there was no significant effect (P > 0.05) on the SR of Sangkuriang catfish fingerling. The supplementation of 1% lysine/kg feed was the optimal dose to improve the feed efficiency and growth of Sangkuriang catfish fingerlings by 83.79% and 3.94%/day, respectively. Therefore, the supplementation of lysine could increase Sangkuriang catfish production.
Ahmed, I., & Khan, M. A. (2004). Dietary lysine requirement of fingerling Indian major carp, Cirrhinus mrigala (Hamilton). Aquaculture, 235(1-4), 499-511. https://doi.org/10.1016/j.aquaculture.2003.12.009
Akiyama, D. M., Domny, W. G., & Lawrence, A. L. (1991). Penaeid shrimp nutrition for the commercial feed industry: Revised. American Soybean Association.
Bicudo, A. J. A., Sado, R., & Cyrino, J. E. P. (2009). Dietary lysine requirement of juvenile pacu Piaractus mesopotamicus (Holmberg, 1887). Aquaculture, 297(1-4), 151-156. https://doi.org/10.1016/j.aquaculture.2009.09.031
Borlongan, I. G., & Coloso, R. M. (1993). Requirement of juvenile milk fish (Chanos chanos) for essential amino acid. Journal of Nutrition, 123(1), 125-132. https://doi.org/10.1093/jn/123.1.125
Bureau, D. P., & Encarnacao, P. M. (2006). Adequately defining the amino acid requirements of fish: The case example of lysine. https://nutricionacuicola.uanl.mx/index.php/acu/article/view/159/157
Dairiki, J. K., Dias, C. T. S., & Cyrino, J. E. P. (2007). Lysine requirements of largemouth bass, Micropterus salmoides: A comparison of methods of analysis of dose-response trials data. Journal of Applied Aquaculture, 19(4), 1-27. https://doi.org/10.1300/J028v19n04_01
Deng, D.-F., Dominy, W., Ju, Z. Y., Koshio, S., Murashige, R., & Wilson, R. P. (2010). Dietary lysine requirement of juvenile Pacific threadfin (Polydactylus sexfilis). Aquaculture, 308(1-2), 44–48. https://doi.org/10.1016/j.aquaculture.2010.07.041
Ebeneezara, S., Vijayagopal, P., Srivastava, P. P., Gupta, S., Sikendrakumar, S., Varghese, T., Prabua, D. L., Chandrasekar, S., Varghese, E., Sayooj, P., Tejpal, C. S., & Wilson L. (2019). Dietary lysine requirement of juvenile Silver pompano, Trachinotus blochii (Lacepede, 1801). Aquaculture, 511, 734234. https://doi.org/10.1016/j.aquaculture.2019.734234
Elesho, F. E., Kröckel, S., Ciavoni, E., Sutter, D. A. H., Verreth, J. A. J., & Schrama, J. W. (2021). Effect of feeding frequency on performance, nutrient digestibility, energy and nitrogen balances in juvenile African catfish (Clarias gariepinus) fed diets with two levels of crystalline methionine. Animal Feed Science and Technology, 281, 115098. https://doi.org/10.1016/j.anifeedsci.2021.115098
El-Husseiny, O. M., Hassan, M. I., El-Haroun, E. R., & Suloma, A. (2017). Utilization of poultry by-product meal supplemented with L-lysine as fish meal replacer in the diet of African catfish Clarias gariepinus (Burchell, 1822). Journal of Applied Aquaculture, 30(1), 63–75. https://doi.org/10.1080/10454438.2017.1412844
Farhat, F., & Khan, M. A. (2013). Dietary L-lysine requirement of fingerling stinging catfish, Heteropneustes fossilis (Bloch) for optimizing growth, fish meal conversion, protein and lysine deposition. Aquaculture Research, 44(4), 523-533. https://doi.org/10.1111/j.1365-2109.2011.03054.x
Forster, I., & Ogata, H. Y. (1998). Lysine requirement of juvenile Japanese flounder Paralichthys olivaceus and juvenile red sea bream Pagrus major. Aquaculture, 161(1-4), 131–142. https://doi.org/10.1016/S0044-8486(97)00263-9
Giri, I. N. A., Sentika, A. S., Suwirya, K., & Marzuqi, M. (2009). Kandungan asam amino lisin optimal dalam pakan untuk pertumbuhan benih ikan kerapu sunu, Plectropomus leopardus [The optimal amino acid content of lysine in the feed for the growth of fry of the sunu grouper, Plectropomus leopardus]. Jurnal Riset Aquakultur, 4(3), 357-366. https://doi.org/10.15578/jra.4.3.2009.357-366
Hansen, A.-C., Rosenlund, G., Karslen, O., Koppe, W., & Hemre, G.-I. (2007). Total replacement of fishmeal with plant proteins in diets for Atlantic cod (Gadus morhua L.) I: Effects on growth and protein retention. Aquaculture, 272(1), 599–611. https://doi.org/10.1016/j.aquaculture.2007.08.034
Ju, Z. Y., Forster, I., Conquest, L., Dominy, W., Kuo, W. C., & Horgen, F. D. (2008). Determination of microbial community structures on shrimp floc cultures by biomarkers and analysis of floc amino acid profiles. Aquaculture Research, 39(2), 118–134. https://doi.org/10.1111/j.1365-2109.2007.01856.x
Khan, M. A., & Abidi, S. F. (2011). Dietary arginine requirement of Heteropneustes fossilis fry (Bloch) based on growth, nutrient retention and hematological parameters. Aquaculture Nutrition, 17(4), 418-428. https://doi.org/10.1111/j.1365-2095.2010.00819.x
Lehninger, A. L., & Nelson, D. L. (1993). Principles of biochemistry. Worth Publishers.
Mai, K. S., Zhang, L., Ai, Q., Duan, Q., Zhang, C., Li, H., Wan, J., & Liufu, Z. (2006). Dietary lysine requirement of juvenile Japanese seabass, (Lateolabrax japonicus). Aquaculture, 258(1-4), 535-542. https://doi.org/10.1016/j.aquaculture.2006.04.043
Miles, D. R., & Chapman, A. F. (2008). The concept of ideal protein in formulation of aquaculture feeds: FA144/FA144, 3/2007. EDIS, 2007(11). https://doi.org/10.32473/edis-fa144-2007
Moon, H. Y., & Gatlin III, D. M. (1991). Total sulfur amino acid requirement of juvenile red drum, Sciaenops ocellatus. Aquaculture, 95(1-2), 97-106. https://doi.org/10.1016/0044-8486(91)90076-J
National Research Council. (2011). Nutrient requirements of fish and shrimp. The National Academies Press. https://doi.org/10.17226/13039
Nguyen, K. A. T., Nguyen, T. A. T., Bui, C. T. P N., Jolly, C., & Nguelifack, B. M. (2021). Shrimp farmers risk management and demand for insurance in Ben Tre and Tra Vinh Provinces in Vietnam. Aquaculture Reports, 19, 100606. https://doi.org/10.1016/j.aqrep.2021.100606
Nguyen, L., & Davis, D. A. (2016). Comparison of crystalline lysine and intact lysine used as a supplement in practical diets of channel catfish (Ictalurus punctatus) and Nile tilapia (Oreochromis niloticus). Aquaculture, 464, 331-339. https://doi.org/10.1016/j.aquaculture.2016.07.005
Rachmawati, D., Hutabarat, J., Samidjan, I., & Windarto, S. (2019). The effects of papain enzyme-enriched diet on protease enzyme activities, fish meal efficiency, and growth of fingerlings of Sangkuriang catfish (Clarias gariepinus) reared in tarpaulin pool. AACL Bioflux, 12(6), 2177-2187.
Rachmawati, D., Samidjan, I., & Mel, M. (2017). Effect of phytase on growth performance, fish meal utilization efficiency and nutrient digestibility in fingerlings of Chanos chanos (Forsskal 1775). Philippine Journal of Science, 146(3), 237-245.
Rawles, S. D., Thompson, K. R., Brady, Y. J., Metts, L. S., Aksoy, M. Y., Gannam, A. L., Twibell, R. G., & Webster, C. D. (2011). Effects of replacing fish meal with poultry by-product meal and soybean meal and reduced protein level on the performance and immune status of pond-grown sunshine bass (Morone chrysops × M. saxatilis). Aquaculture Nutrition, 17(3), e708-e721. https://doi.org/10.1111/j.1365-2095.2010.00831.x
Robinson, E. H., Menghe, H. L., & Bruce, B. M. (2007). A practical guide to nutrition, feeds, and feeding of catfish (2nd revision). https://agrilife.org/fisheries2/files/2013/09/A-Practical-Guide-to-Nutrition-Feeds-and-Feeding-of-Catfish.pdf
Ruchimat, T., Matsumoto, T., Hosokawa, H., Itoh, Y., & Shimeno, S. (1997). Quantitative lysine requirement of yellow tail (Serola quinqueradiata). Aquaculture, 158(3-4), 331-339. https://doi.org/10.1016/S0044-8486(97)00215-9
Santiago, C. B., & Lovell, R. T. (1988). Amino acid requirements for growth of Nile tilapia. Journal of Nutrition, 118(12), 1540-1546. https://doi.org/10.1093/jn/118.12.1540
SAS. (2004). SAS/STAT® 9.1: User’s guide. SAS Institute Inc.
Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: A biometrical approach (3rd ed.). McGraw Hill, Inc.
Steffens, W. (1989). Principles of fish nutrition. Ellis Horwood.
Williams, K., Barlow, C., & Rodgers, L. (2001). Efficacy of crystalline and protein-bound amino acids for amino acid enrichment of diets for barramundi/Asian seabass (Lates calcarifer Bloch). Aquaculture Research, 32(S1), 415-429, https://doi.org/10.1046/j.1355-557x.2001.00032.x
Xie, F., Ai, Q., Mai, K., Xu, W. & Wang, X. (2012). Dietary lysine requirement of large yellow croaker (Pseudosciaena crocea, Richardson 1846) larvae. Aquaculture Research, 43(6), 917-928. https://doi.org/10.1111/j.1365-2109.2011.02906.x
Zhang, X., Wang, H., Zhang, J., Lin, B., Chen, L., Wang, Q., Li, G., & Deng, J. (2021). Utilization of different lysine isomers: A case study on the growth, metabolic enzymes, antioxidant capacity and muscle amino acid composition in Macrobrachium rosenbergii. Animal Feed Science and Technology, 280, 115078. https://doi.org/10.1016/j.anifeedsci.2021.115078
Zhao, Y., Li, J. Y., Jiang, Q., Zhou, X. Q., Feng, L., Liu, Y., Jiang, W. D., Wu, P., Zhou, J., Zhao, J., & Jiang, J. (2020). Leucine improved growth performance, muscle growth, and muscle protein deposition through AKT/TOR and AKT/FOXO3a signaling pathways in hybrid catfish Pelteobagrus vachelli × Leiocassis longirostris. Cells, 9(2), 1-22. https://doi.org/10.3390/cells9020327
Zhou, Q.-C., Wu, Z.-H., Chi, S.-Y., & Yang, Q.-H. (2007). Dietary lysine requirement of juvenile cobia (Rachycentron canadum). Aquaculture, 273(4), 634-640. https://doi.org/10.1016/j.aquaculture.2007.08.056
Zhou, F., Shao, J., Xu, R., Ma, J., & Xu, Z. (2010). Quantitative L-lysine requirement of juvenile black sea bream (Sparus macrocephalus). Aquaculture Nutrition, 16(2), 194-204. https://doi.org/10.1111/j.1365-2095.2009.00651.x
Ziethoun, I. H., Ullrey, D. E., Magee, W. T., Gill, J. L., & Bergen, W. G. (1976). Quantifying nutrient requirements of fish. Journal of the Fisheries Board of Canada, 33(1), 167-172. https://doi.org/10.1139/f76-019
ISSN 1511-3701
e-ISSN 2231-8542